README.md 1.51 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
# bert_large_squad_onnx
sugon_cxj's avatar
sugon_cxj committed
2
3
4
5
6
7
8
9
10
11
12
## 模型介绍
bert-large的squad模型。
## 模型结构
基于transformer的结构
## 推理
### 环境配置
[光源](https://www.sourcefind.cn/#/service-details)可拉取推理的docker镜像,在[光合开发者社区](https://cancon.hpccube.com:65024/4/main/)可下载onnxruntime安装包。bert_large_squad_onnx推荐的镜像如下:
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
[huggingface](https://huggingface.co/ctuning/mlperf-inference-bert-onnx-fp32-squad-v1.1)下载模型model.onnx到当前目录
sugon_cxj's avatar
sugon_cxj committed
13

sugon_cxj's avatar
sugon_cxj committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
执行fp16转换
```
python3 fp16-convert.py
```
### 推理
```
python3 main.py
```
## 性能数据

fp32
| loop | time(ms) |
| :------: | :------: |
| 1 | 0.09298863005824387 | 
| 2 | 0.04267867305316031 | 
| 3 | 0.04294574190862477 | 
| 4 | 0.042622152948752046 | 
| 5 | 0.042897791834548116 | 
| 6 | 0.04309680196456611 | 
| 7 | 0.04240077408030629 | 
| 8 | 0.042515473905950785 | 
| 9 | 0.0424974428024143 | 
| 10 | 0.04259936395101249 | 

fp16
| loop | time(ms) |
| :------: | :------: |
| 1 | 0.059390615904703736 | 
| 2 | 0.04876187210902572 | 
| 3 | 0.04870052193291485 | 
| 4 | 0.04873379203490913 | 
| 5 | 0.04842417314648628 | 
| 6 | 0.04876326210796833 | 
| 7 | 0.04846481396816671 | 
| 8 | 0.04872900294139981 | 
| 9 | 0.048555332934483886 | 
| 10 | 0.048343464033678174 | 

## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/bert_large_squad_onnx
## 参考
https://github.com/google-research/bert
sugon_cxj's avatar
sugon_cxj committed
56