crf.py 7.42 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#! -*- coding:utf-8 -*-
# bert+crf用来做实体识别
# 数据集:http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
# [valid_f1]  token_level: 97.06; entity_level: 95.90


import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from bert4torch.snippets import sequence_padding, Callback, ListDataset, seed_everything
from bert4torch.layers import CRF
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from tqdm import tqdm

maxlen = 256
batch_size = 64
categories = ['O', 'B-LOC', 'I-LOC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG']
categories_id2label = {i: k for i, k in enumerate(categories)}
categories_label2id = {k: i for i, k in enumerate(categories)}

# BERT base
config_path = '/bert4torch/datasets/bert-base-chinese/config.json'
checkpoint_path = '/bert4torch/datasets/bert-base-chinese/pytorch_model.bin'
dict_path = '/bert4torch/datasets/bert-base-chinese/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 固定seed
seed_everything(42)

yangzhong's avatar
yangzhong committed
33
34
35
36
37
38
39
40
41
42
# 添加amp参数开关
parser = argparse.ArgumentParser(description='bert4torch training')
#parser.add_argument('--use-amp', type=bool, default=True, help='Use automatic mixed precision (AMP)')
parser.add_argument(
       "--use-amp",
       action="store_true",
       help="Run model AMP (automatic mixed precision) mode.",
   )
args = parser.parse_args()

yangzhong's avatar
yangzhong committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        D = []
        with open(filename, encoding='utf-8') as f:
            f = f.read()
            for l in f.split('\n\n'):
                if not l:
                    continue
                d = ['']
                for i, c in enumerate(l.split('\n')):
                    char, flag = c.split(' ')
                    d[0] += char
                    if flag[0] == 'B':
                        d.append([i, i, flag[2:]])
                    elif flag[0] == 'I':
                        d[-1][1] = i
                D.append(d)
        return D


# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

def collate_fn(batch):
    batch_token_ids, batch_labels = [], []
    for d in batch:
        tokens = tokenizer.tokenize(d[0], maxlen=maxlen)
        mapping = tokenizer.rematch(d[0], tokens)
        start_mapping = {j[0]: i for i, j in enumerate(mapping) if j}
        end_mapping = {j[-1]: i for i, j in enumerate(mapping) if j}
        token_ids = tokenizer.tokens_to_ids(tokens)
        labels = np.zeros(len(token_ids))
        for start, end, label in d[1:]:
            if start in start_mapping and end in end_mapping:
                start = start_mapping[start]
                end = end_mapping[end]
                labels[start] = categories_label2id['B-'+label]
                labels[start + 1:end + 1] = categories_label2id['I-'+label]
        batch_token_ids.append(token_ids)
        batch_labels.append(labels)
    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_labels = torch.tensor(sequence_padding(batch_labels), dtype=torch.long, device=device)
    return batch_token_ids, batch_labels

# 转换数据集
train_dataloader = DataLoader(MyDataset('/bert4torch/datasets/bert-base-chinese/china-people-daily-ner-corpus/example.train'), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataloader = DataLoader(MyDataset('/bert4torch/datasets/bert-base-chinese/china-people-daily-ner-corpus/example.dev'), batch_size=batch_size, collate_fn=collate_fn) 

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self):
        super().__init__()
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, segment_vocab_size=0)
        self.fc = nn.Linear(768, len(categories))  # 包含首尾
        self.crf = CRF(len(categories))

    def forward(self, token_ids):
        sequence_output = self.bert([token_ids])  # [btz, seq_len, hdsz]
        emission_score = self.fc(sequence_output)  # [btz, seq_len, tag_size]
        attention_mask = token_ids.gt(0).long()
        return emission_score, attention_mask

    def predict(self, token_ids):
        self.eval()
        with torch.no_grad():
            emission_score, attention_mask = self.forward(token_ids)
            best_path = self.crf.decode(emission_score, attention_mask)  # [btz, seq_len]
        return best_path

model = Model().to(device)

class Loss(nn.Module):
    def forward(self, outputs, labels):
        return model.crf(*outputs, labels)

yangzhong's avatar
yangzhong committed
120
121
122
123
124
125
if args.use_amp:
    model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=True)  # 使用 AMP 进行训练fp16
else:
    model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=False)  # 不使用 AMP 进行训练 fp32

# model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5))                   # fp32
yangzhong's avatar
yangzhong committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=True)     # fp16


def evaluate(data):
    X, Y, Z = 1e-10, 1e-10, 1e-10
    X2, Y2, Z2 = 1e-10, 1e-10, 1e-10
    for token_ids, label in tqdm(data):
        scores = model.predict(token_ids)  # [btz, seq_len]
        attention_mask = label.gt(0)

        # token粒度
        X += (scores.eq(label) * attention_mask).sum().item()
        Y += scores.gt(0).sum().item()
        Z += label.gt(0).sum().item()

        # entity粒度
        entity_pred = trans_entity2tuple(scores)
        entity_true = trans_entity2tuple(label)
        X2 += len(entity_pred.intersection(entity_true))
        Y2 += len(entity_pred)
        Z2 += len(entity_true)
    f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
    f2, precision2, recall2 = 2 * X2 / (Y2 + Z2), X2/ Y2, X2 / Z2
    return f1, precision, recall, f2, precision2, recall2


def trans_entity2tuple(scores):
    '''把tensor转为(样本id, start, end, 实体类型)的tuple用于计算指标
    '''
    batch_entity_ids = set()
    for i, one_samp in enumerate(scores):
        entity_ids = []
        for j, item in enumerate(one_samp):
            flag_tag = categories_id2label[item.item()]
            if flag_tag.startswith('B-'):  # B
                entity_ids.append([i, j, j, flag_tag[2:]])
            elif len(entity_ids) == 0:
                continue
            elif (len(entity_ids[-1]) > 0) and flag_tag.startswith('I-') and (flag_tag[2:]==entity_ids[-1][-1]):  # I
                entity_ids[-1][-2] = j
            elif len(entity_ids[-1]) > 0:
                entity_ids.append([])

        for i in entity_ids:
            if i:
                batch_entity_ids.add(tuple(i))
    return batch_entity_ids

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        f1, precision, recall, f2, precision2, recall2 = evaluate(valid_dataloader)
        if f2 > self.best_val_f1:
            self.best_val_f1 = f2
            # model.save_weights('best_model.pt')
        print(f'[val-token  level] f1: {f1:.5f}, p: {precision:.5f} r: {recall:.5f}')
        print(f'[val-entity level] f1: {f2:.5f}, p: {precision2:.5f} r: {recall2:.5f} best_f1: {self.best_val_f1:.5f}\n')


if __name__ == '__main__':

    evaluator = Evaluator()

    model.fit(train_dataloader, epochs=20, steps_per_epoch=None, callbacks=[evaluator])

else: 

    model.load_weights('best_model.pt')