task_sentiment_classification.py 5.64 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#! -*- coding:utf-8 -*-
# 情感分类任务, 加载bert权重
# valid_acc: 94.72, test_acc: 94.11


from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, text_segmentate, ListDataset, seed_everything, get_pool_emb
import torch.nn as nn
import torch
import torch.optim as optim
import random, os, numpy as np
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter

maxlen = 256
batch_size = 16
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
writer = SummaryWriter(log_dir='./summary')  # prepare summary writer
choice = 'train'  # train表示训练,infer表示推理

# 固定seed
seed_everything(42)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filenames):
        """加载数据,并尽量划分为不超过maxlen的句子
        """
        D = []
        seps, strips = u'\n。!?!?;;,, ', u';;,, '
        for filename in filenames:
            with open(filename, encoding='utf-8') as f:
                for l in f:
                    text, label = l.strip().split('\t')
                    for t in text_segmentate(text, maxlen - 2, seps, strips):
                        D.append((t, int(label)))
        return D

def collate_fn(batch):
    batch_token_ids, batch_segment_ids, batch_labels = [], [], []
    for text, label in batch:
        token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
        batch_token_ids.append(token_ids)
        batch_segment_ids.append(segment_ids)
        batch_labels.append([label])

    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device)
    return [batch_token_ids, batch_segment_ids], batch_labels.flatten()

# 加载数据集
train_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.train.data']), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.valid.data']), batch_size=batch_size, collate_fn=collate_fn) 
test_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.test.data']),  batch_size=batch_size, collate_fn=collate_fn) 

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self, pool_method='cls') -> None:
        super().__init__()
        self.pool_method = pool_method
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, with_pool=True)
        self.dropout = nn.Dropout(0.1)
        self.dense = nn.Linear(self.bert.configs['hidden_size'], 2)

    def forward(self, token_ids, segment_ids):
        hidden_states, pooling = self.bert([token_ids, segment_ids])
        pooled_output = get_pool_emb(hidden_states, pooling, token_ids.gt(0).long(), self.pool_method)
        output = self.dropout(pooled_output)
        output = self.dense(output)
        return output
model = Model().to(device)

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=nn.CrossEntropyLoss(),
    optimizer=optim.Adam(model.parameters(), lr=2e-5),
    metrics=['accuracy']
)

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_acc = 0.

    # def on_batch_end(self, global_step, batch, logs=None):
    #     if global_step % 10 == 0:
    #         writer.add_scalar(f"train/loss", logs['loss'], global_step)
    #         val_acc = evaluate(valid_dataloader)
    #         writer.add_scalar(f"valid/acc", val_acc, global_step)

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_acc = self.evaluate(valid_dataloader)
        test_acc = self.evaluate(test_dataloader)
        if val_acc > self.best_val_acc:
            self.best_val_acc = val_acc
            # model.save_weights('best_model.pt')
        print(f'val_acc: {val_acc:.5f}, test_acc: {test_acc:.5f}, best_val_acc: {self.best_val_acc:.5f}\n')

    # 定义评价函数
    def evaluate(self, data):
        total, right = 0., 0.
        for x_true, y_true in data:
            y_pred = model.predict(x_true).argmax(axis=1)
            total += len(y_true)
            right += (y_true == y_pred).sum().item()
        return right / total

def inference(texts):
    '''单条样本推理
    '''
    for text in texts:
        token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
        token_ids = torch.tensor(token_ids, dtype=torch.long, device=device)[None, :]
        segment_ids = torch.tensor(segment_ids, dtype=torch.long, device=device)[None, :]

        logit = model.predict([token_ids, segment_ids])
        y_pred = torch.argmax(torch.softmax(logit, dim=-1)).cpu().numpy()
        print(text, ' ----> ', y_pred)

if __name__ == '__main__':
    if choice == 'train':
        evaluator = Evaluator()
        model.fit(train_dataloader, epochs=10, steps_per_epoch=None, callbacks=[evaluator])
    else:
        model.load_weights('best_model.pt')
        inference(['我今天特别开心', '我今天特别生气'])