crf_ddp.py 8.76 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#! -*- coding:utf-8 -*-
# bert+crf用来做实体识别
# 数据集:http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
# [valid_f1]  token_level: 97.06; entity_level: 95.90


import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from bert4torch.snippets import sequence_padding, Callback, ListDataset, seed_everything
from bert4torch.layers import CRF
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from tqdm import tqdm
from bert4torch.models import BaseModelDDP
import os
yangzhong's avatar
yangzhong committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import argparse

# 添加参数开关
parser = argparse.ArgumentParser(description='bert4torch training')
parser.add_argument(
       "--use-amp",
       action="store_true",
       help="Run model AMP (automatic mixed precision) mode.",
   )
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')

parser.add_argument("--root-path", default='/root', type=str, help='root path')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
                    help='number of total epochs to run')

args = parser.parse_args()

yangzhong's avatar
yangzhong committed
40
41

maxlen = 256
yangzhong's avatar
yangzhong committed
42
batch_size = args.batch_size
yangzhong's avatar
yangzhong committed
43
44
45
46
47
categories = ['O', 'B-LOC', 'I-LOC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG']
categories_id2label = {i: k for i, k in enumerate(categories)}
categories_label2id = {k: i for i, k in enumerate(categories)}

# BERT base
yangzhong's avatar
yangzhong committed
48
49
50
51
52
root_path = args.root_path
config_path = root_path + '/bert-base-chinese/config.json'
checkpoint_path = root_path + '/bert-base-chinese/pytorch_model.bin'
dict_path = root_path + '/bert-base-chinese/vocab.txt'

yangzhong's avatar
yangzhong committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#device = 'cuda' if torch.cuda.is_available() else 'cpu'
local_rank = int(os.environ['LOCAL_RANK'])
print("local_rank ", local_rank)
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(backend='nccl')

# 固定seed
seed_everything(42)

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        D = []
        with open(filename, encoding='utf-8') as f:
            f = f.read()
            for l in f.split('\n\n'):
                if not l:
                    continue
                d = ['']
                for i, c in enumerate(l.split('\n')):
                    char, flag = c.split(' ')
                    d[0] += char
                    if flag[0] == 'B':
                        d.append([i, i, flag[2:]])
                    elif flag[0] == 'I':
                        d[-1][1] = i
                D.append(d)
        return D


# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

def collate_fn(batch):
    batch_token_ids, batch_labels = [], []
    for d in batch:
        tokens = tokenizer.tokenize(d[0], maxlen=maxlen)
        mapping = tokenizer.rematch(d[0], tokens)
        start_mapping = {j[0]: i for i, j in enumerate(mapping) if j}
        end_mapping = {j[-1]: i for i, j in enumerate(mapping) if j}
        token_ids = tokenizer.tokens_to_ids(tokens)
        labels = np.zeros(len(token_ids))
        for start, end, label in d[1:]:
            if start in start_mapping and end in end_mapping:
                start = start_mapping[start]
                end = end_mapping[end]
                labels[start] = categories_label2id['B-'+label]
                labels[start + 1:end + 1] = categories_label2id['I-'+label]
        batch_token_ids.append(token_ids)
        batch_labels.append(labels)
    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_labels = torch.tensor(sequence_padding(batch_labels), dtype=torch.long, device=device)
    return batch_token_ids, batch_labels

# 转换数据集
yangzhong's avatar
yangzhong committed
110
train_dataset = MyDataset(root_path + '/bert-base-chinese/china-people-daily-ner-corpus/example.train')
yangzhong's avatar
yangzhong committed
111
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
yangzhong's avatar
yangzhong committed
112
113
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=collate_fn)
valid_dataloader = DataLoader(MyDataset(root_path + '/bert-base-chinese/china-people-daily-ner-corpus/example.dev'), batch_size=args.batch_size, collate_fn=collate_fn)
yangzhong's avatar
yangzhong committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self):
        super().__init__()
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, segment_vocab_size=0)
        self.fc = nn.Linear(768, len(categories))  # 包含首尾
        self.crf = CRF(len(categories))

    def forward(self, token_ids):
        sequence_output = self.bert([token_ids])  # [btz, seq_len, hdsz]
        emission_score = self.fc(sequence_output)  # [btz, seq_len, tag_size]
        attention_mask = token_ids.gt(0).long()
        return emission_score, attention_mask

    def predict(self, token_ids):
        self.eval()
        with torch.no_grad():
            emission_score, attention_mask = self.forward(token_ids)
            best_path = self.crf.decode(emission_score, attention_mask)  # [btz, seq_len]
        return best_path

model = Model().to(device)
# 指定DDP模型使用多gpu, master_rank为指定用于打印训练过程的local_rank
model = BaseModelDDP(model, master_rank=0, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=False)

class Loss(nn.Module):
    def forward(self, outputs, labels):
        return model.module.crf(*outputs, labels)

yangzhong's avatar
yangzhong committed
144
145
146
147
148
149
if args.use_amp:
    model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=True)  # 使用 AMP 进行训练fp16
else:
    model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=False)  # 不使用 AMP 进行训练 fp32

# model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5))          # fp32
yangzhong's avatar
yangzhong committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# 定义使用的loss和optimizer,这里支持自定义
# model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), use_amp=True)  # fp16
#compile(self, loss, optimizer, scheduler=None, max_grad_norm=None, use_amp=False, metrics=None, adversarial_train={'name': ''}):


def evaluate(data):
    X, Y, Z = 1e-10, 1e-10, 1e-10
    X2, Y2, Z2 = 1e-10, 1e-10, 1e-10
    for token_ids, label in tqdm(data):
        scores = model.module.predict(token_ids)  # [btz, seq_len]
        attention_mask = label.gt(0)

        # token粒度
        #print("#### scores: ", scores)
        X += (scores.eq(label) * attention_mask).sum().item()
        Y += scores.gt(0).sum().item()
        Z += label.gt(0).sum().item()

        # entity粒度
        entity_pred = trans_entity2tuple(scores)
        entity_true = trans_entity2tuple(label)
        X2 += len(entity_pred.intersection(entity_true))
        Y2 += len(entity_pred)
        Z2 += len(entity_true)
    f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
    f2, precision2, recall2 = 2 * X2 / (Y2 + Z2), X2/ Y2, X2 / Z2
    return f1, precision, recall, f2, precision2, recall2


def trans_entity2tuple(scores):
    '''把tensor转为(样本id, start, end, 实体类型)的tuple用于计算指标
    '''
    batch_entity_ids = set()
    for i, one_samp in enumerate(scores):
        entity_ids = []
        for j, item in enumerate(one_samp):
            flag_tag = categories_id2label[item.item()]
            if flag_tag.startswith('B-'):  # B
                entity_ids.append([i, j, j, flag_tag[2:]])
            elif len(entity_ids) == 0:
                continue
            elif (len(entity_ids[-1]) > 0) and flag_tag.startswith('I-') and (flag_tag[2:]==entity_ids[-1][-1]):  # I
                entity_ids[-1][-2] = j
            elif len(entity_ids[-1]) > 0:
                entity_ids.append([])

        for i in entity_ids:
            if i:
                batch_entity_ids.add(tuple(i))
    return batch_entity_ids

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        f1, precision, recall, f2, precision2, recall2 = evaluate(valid_dataloader)
        if f2 > self.best_val_f1:
            self.best_val_f1 = f2
            # model.save_weights('best_model.pt')
        print(f'[val-token  level] f1: {f1:.5f}, p: {precision:.5f} r: {recall:.5f}')
        print(f'[val-entity level] f1: {f2:.5f}, p: {precision2:.5f} r: {recall2:.5f} best_f1: {self.best_val_f1:.5f}\n')


if __name__ == '__main__':

    evaluator = Evaluator()

yangzhong's avatar
yangzhong committed
220
221
    #model.fit(train_dataloader, epochs=20, steps_per_epoch=None, callbacks=[evaluator])
    model.fit(train_dataloader, epochs=args.epochs, steps_per_epoch=None, callbacks=[evaluator])
yangzhong's avatar
yangzhong committed
222
223
224
225

else: 

    model.load_weights('best_model.pt')