single_process_pretrain.sh 5.26 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/bin/bash

# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

lrank=$OMPI_COMM_WORLD_LOCAL_RANK
comm_rank=$OMPI_COMM_WORLD_RANK
comm_size=$OMPI_COMM_WORLD_SIZE
WORKSPACE="/workspace"

#parameters
train_batch_size=24
learning_rate=${2:-"6e-3"}
precision=${3:-"fp16"}
num_gpus=${4:-4}
warmup_proportion=${5:-"0.2843"}
train_steps=${6:-7038}
save_checkpoint_steps=${7:-200}
resume_training=${8:-"false"}
create_logfile=${9:-"true"}
accumulate_gradients=${10:-"true"}
gradient_accumulation_steps=${11:-4}
seed=${12:-12439}
job_name=${13:-"bert_lamb_pretraining"}
allreduce_post_accumulation=${14:-"true"}
allreduce_post_accumulation_fp16=${15:-"true"}
train_batch_size_phase2=${16:-4096}
learning_rate_phase2=${17:-"4e-3"}
warmup_proportion_phase2=${18:-"0.128"}
train_steps_phase2=${19:-1563}
gradient_accumulation_steps_phase2=${20:-512}
DATASET=${WORKSPACE}/lower_case_1_seq_len_128_max_pred_20_masked_lm_prob_0.15_random_seed_12345_dupe_factor_5_shard_1472_test_split_10/wikicorpus_en/training # change this for other datasets
DATA_DIR_PHASE1=${21:-$BERT_PREP_WORKING_DIR/${DATASET}/}
BERT_CONFIG=${WORKSPACE}/uncased_L-12_H-768_A-12/bert_config.json
CODEDIR=${22:-"`pwd`"}
init_checkpoint=${23:-"None"}
RESULTS_DIR=$CODEDIR/results
CHECKPOINTS_DIR=$RESULTS_DIR/checkpoints

mkdir -p $CHECKPOINTS_DIR


if [ ! -d "$DATA_DIR_PHASE1" ] ; then
   echo "Warning! $DATA_DIR_PHASE1 directory missing. Training cannot start"
fi
if [ ! -d "$RESULTS_DIR" ] ; then
   echo "Error! $RESULTS_DIR directory missing."
   exit -1
fi
if [ ! -d "$CHECKPOINTS_DIR" ] ; then
   echo "Warning! $CHECKPOINTS_DIR directory missing."
   echo "Checkpoints will be written to $RESULTS_DIR instead."
   CHECKPOINTS_DIR=$RESULTS_DIR
fi
if [ ! -f "$BERT_CONFIG" ] ; then
   echo "Error! BERT large configuration file not found at $BERT_CONFIG"
   exit -1
fi

PREC=""
if [ "$precision" = "fp16" ] ; then
   PREC="--fp16"
elif [ "$precision" = "fp32" ] ; then
   PREC=""
elif [ "$precision" = "tf32" ] ; then
   PREC=""
else
   echo "Unknown <precision> argument"
   exit -2
fi

ACCUMULATE_GRADIENTS=""
if [ "$accumulate_gradients" == "true" ] ; then
   ACCUMULATE_GRADIENTS="--gradient_accumulation_steps=$gradient_accumulation_steps"
fi

CHECKPOINT=""
if [ "$resume_training" == "true" ] ; then
   CHECKPOINT="--resume_from_checkpoint"
fi

ALL_REDUCE_POST_ACCUMULATION=""
if [ "$allreduce_post_accumulation" == "true" ] ; then
   ALL_REDUCE_POST_ACCUMULATION="--allreduce_post_accumulation"
fi

ALL_REDUCE_POST_ACCUMULATION_FP16=""
if [ "$allreduce_post_accumulation_fp16" == "true" ] ; then
   ALL_REDUCE_POST_ACCUMULATION_FP16="--allreduce_post_accumulation_fp16"
fi

INIT_CHECKPOINT=""
if [ "$init_checkpoint" != "None" ] ; then
   INIT_CHECKPOINT="--init_checkpoint=$init_checkpoint"
fi

echo $DATA_DIR_PHASE1
INPUT_DIR=$DATA_DIR_PHASE1
CMD=" $CODEDIR/run_pretraining_v1.py"
CMD+=" --input_dir=$DATA_DIR_PHASE1"
CMD+=" --output_dir=$CHECKPOINTS_DIR"
CMD+=" --config_file=$BERT_CONFIG"
CMD+=" --bert_model=bert-large-uncased"
CMD+=" --train_batch_size=$train_batch_size"
CMD+=" --max_seq_length=128"
CMD+=" --max_predictions_per_seq=20"
CMD+=" --max_steps=$train_steps"
CMD+=" --warmup_proportion=$warmup_proportion"
CMD+=" --num_steps_per_checkpoint=$save_checkpoint_steps"
CMD+=" --learning_rate=$learning_rate"
CMD+=" --seed=$seed"
CMD+=" $PREC"
CMD+=" $ACCUMULATE_GRADIENTS"
CMD+=" $CHECKPOINT"
CMD+=" $ALL_REDUCE_POST_ACCUMULATION"
CMD+=" $ALL_REDUCE_POST_ACCUMULATION_FP16"
CMD+=" $INIT_CHECKPOINT"
CMD+=" --do_train"
CMD+=" --json-summary ${RESULTS_DIR}/dllogger.json "
CMD+=" --local_rank ${comm_rank} "
CMD+=" --dist_url tcp://${1}:45679 "
CMD+=" --world_size ${comm_size} "

#CMD="python3 -m torch.distributed.launch --nproc_per_node=$num_gpus $CMD"
APP="python3 $CMD"


if [ "$create_logfile" = "true" ] ; then
  export GBS=$(expr $train_batch_size \* $num_gpus)
  printf -v TAG "pyt_bert_pretraining_phase1_%s_gbs%d" "$precision" $GBS
  DATESTAMP=`date +'%y%m%d%H%M%S'`
  LOGFILE=$RESULTS_DIR/$job_name.$TAG.$DATESTAMP.log
  printf "Logs written to %s\n" "$LOGFILE"
fi

echo ${CMD}

case ${lrank} in
[0])
  export HIP_VISIBLE_DEVICES=0,1,2,3
  export UCX_NET_DEVICES=mlx5_0:1
  export UCX_IB_PCI_BW=mlx5_0:50Gbs
  GLOO_SOCKET_IFNAME=ib0 numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[1])
  export HIP_VISIBLE_DEVICES=0,1,2,3
  export UCX_NET_DEVICES=mlx5_1:1
  export UCX_IB_PCI_BW=mlx5_1:50Gbs
  GLOO_SOCKET_IFNAME=ib1 numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
[2])
  export HIP_VISIBLE_DEVICES=0,1,2,3
  export UCX_NET_DEVICES=mlx5_2:1
  export UCX_IB_PCI_BW=mlx5_2:50Gbs
  GLOO_SOCKET_IFNAME=ib2 numactl --cpunodebind=2 --membind=2 ${APP}
  ;;
[3])
  export HIP_VISIBLE_DEVICES=0,1,2,3
  export UCX_NET_DEVICES=mlx5_3:1
  export UCX_IB_PCI_BW=mlx5_3:50Gbs
  GLOO_SOCKET_IFNAME=ib3 numactl --cpunodebind=3 --membind=3 ${APP}
  ;;
esac