"vscode:/vscode.git/clone" did not exist on "8675bdf2461550a19192c334a46d55c58f314dbf"
run_squad.py 54.1 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Run BERT on SQuAD."""

from __future__ import absolute_import, division, print_function

import argparse
import collections
import json
import logging
import math
import os
import random
import sys
from io import open

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

from apex import amp
from schedulers import LinearWarmUpScheduler
from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
import modeling
from optimization import BertAdam, warmup_linear
from tokenization import (BasicTokenizer, BertTokenizer, whitespace_tokenize)
from utils import is_main_process, format_step
import dllogger, time

torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt='%m/%d/%Y %H:%M:%S',
                    level=logging.INFO)
logger = logging.getLogger(__name__)


class SquadExample(object):
    """
    A single training/test example for the Squad dataset.
    For examples without an answer, the start and end position are -1.
    """

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
                 end_position=None,
                 is_impossible=None):
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
        self.is_impossible = is_impossible

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
        s += "qas_id: %s" % (self.qas_id)
        s += ", question_text: %s" % (
            self.question_text)
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
        if self.end_position:
            s += ", end_position: %d" % (self.end_position)
        if self.is_impossible:
            s += ", is_impossible: %r" % (self.is_impossible)
        return s


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
                 end_position=None,
                 is_impossible=None):
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
        self.is_impossible = is_impossible


def read_squad_examples(input_file, is_training, version_2_with_negative):
    """Read a SQuAD json file into a list of SquadExample."""
    with open(input_file, "r", encoding='utf-8') as reader:
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
                is_impossible = False
                if is_training:
                    if version_2_with_negative:
                        is_impossible = qa["is_impossible"]
                    if (len(qa["answers"]) != 1) and (not is_impossible):
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
                    if not is_impossible:
                        answer = qa["answers"][0]
                        orig_answer_text = answer["text"]
                        answer_offset = answer["answer_start"]
                        answer_length = len(orig_answer_text)
                        start_position = char_to_word_offset[answer_offset]
                        end_position = char_to_word_offset[answer_offset + answer_length - 1]
                        # Only add answers where the text can be exactly recovered from the
                        # document. If this CAN'T happen it's likely due to weird Unicode
                        # stuff so we will just skip the example.
                        #
                        # Note that this means for training mode, every example is NOT
                        # guaranteed to be preserved.
                        actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                        cleaned_answer_text = " ".join(
                            whitespace_tokenize(orig_answer_text))
                        if actual_text.find(cleaned_answer_text) == -1:
                            logger.warning("Could not find answer: '%s' vs. '%s'",
                                           actual_text, cleaned_answer_text)
                            continue
                    else:
                        start_position = -1
                        end_position = -1
                        orig_answer_text = ""

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
                    end_position=end_position,
                    is_impossible=is_impossible)
                examples.append(example)
    return examples


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1
        if is_training and not example.is_impossible:
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
            if is_training and not example.is_impossible:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset
            if is_training and example.is_impossible:
                start_position = 0
                end_position = 0

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
                    end_position=end_position,
                    is_impossible=example.is_impossible))
            unique_id += 1

    return features


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)


def _check_is_max_context(doc_spans, cur_span_index, position):
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def get_answers(examples, features, results, args):
    predictions = collections.defaultdict(list) #it is possible that one example corresponds to multiple features
    Prediction = collections.namedtuple('Prediction', ['text', 'start_logit', 'end_logit'])

    if args.version_2_with_negative:
        null_vals = collections.defaultdict(lambda: (float("inf"),0,0))
    for ex, feat, result in match_results(examples, features, results):
        start_indices = _get_best_indices(result.start_logits, args.n_best_size)
        end_indices = _get_best_indices(result.end_logits, args.n_best_size)
        prelim_predictions = get_valid_prelim_predictions(start_indices, end_indices, feat, result, args)
        prelim_predictions = sorted(
                            prelim_predictions,
                            key=lambda x: (x.start_logit + x.end_logit),
                            reverse=True)
        if args.version_2_with_negative:
            score = result.start_logits[0] + result.end_logits[0]
            if score < null_vals[ex.qas_id][0]:
                null_vals[ex.qas_id] = (score, result.start_logits[0], result.end_logits[0])

        curr_predictions = []
        seen_predictions = []
        for pred in prelim_predictions:
            if len(curr_predictions) == args.n_best_size:
                break
            if pred.start_index > 0:  # this is a non-null prediction TODO: this probably is irrelevant
                final_text = get_answer_text(ex, feat, pred, args)
                if final_text in seen_predictions:
                    continue
            else:
                final_text = ""

            seen_predictions.append(final_text)
            curr_predictions.append(Prediction(final_text, pred.start_logit, pred.end_logit))
        predictions[ex.qas_id] += curr_predictions

    #Add empty prediction
    if args.version_2_with_negative:
        for qas_id in predictions.keys():
            predictions[qas_id].append(Prediction('',
                                                  null_vals[ex.qas_id][1],
                                                  null_vals[ex.qas_id][2]))


    nbest_answers = collections.defaultdict(list)
    answers = {}
    for qas_id, preds in predictions.items():
        nbest = sorted(
                preds,
                key=lambda x: (x.start_logit + x.end_logit),
                reverse=True)[:args.n_best_size]

        # In very rare edge cases we could only have single null prediction.
        # So we just create a nonce prediction in this case to avoid failure.
        if not nbest:                                                    
            nbest.append(Prediction(text="empty", start_logit=0.0, end_logit=0.0))

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry and entry.text:
                best_non_null_entry = entry
        probs = _compute_softmax(total_scores)
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_answers[qas_id].append(output)
        if args.version_2_with_negative:
            score_diff = null_vals[qas_id][0] - best_non_null_entry.start_logit - best_non_null_entry.end_logit
            if score_diff > args.null_score_diff_threshold:
                answers[qas_id] = ""
            else:
                answers[qas_id] = best_non_null_entry.text
        else:
            answers[qas_id] = nbest_answers[qas_id][0]['text']

    return answers, nbest_answers

def get_answer_text(example, feature, pred, args):
    tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
    orig_doc_start = feature.token_to_orig_map[pred.start_index]
    orig_doc_end = feature.token_to_orig_map[pred.end_index]
    orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
    tok_text = " ".join(tok_tokens)

    # De-tokenize WordPieces that have been split off.
    tok_text = tok_text.replace(" ##", "")
    tok_text = tok_text.replace("##", "")

    # Clean whitespace
    tok_text = tok_text.strip()
    tok_text = " ".join(tok_text.split())
    orig_text = " ".join(orig_tokens)

    final_text = get_final_text(tok_text, orig_text, args.do_lower_case, args.verbose_logging)
    return final_text

def get_valid_prelim_predictions(start_indices, end_indices, feature, result, args):
    
    _PrelimPrediction = collections.namedtuple(
        "PrelimPrediction",
        ["start_index", "end_index", "start_logit", "end_logit"])
    prelim_predictions = []
    for start_index in start_indices:
        for end_index in end_indices:
            if start_index >= len(feature.tokens):
                continue
            if end_index >= len(feature.tokens):
                continue
            if start_index not in feature.token_to_orig_map:
                continue
            if end_index not in feature.token_to_orig_map:
                continue
            if not feature.token_is_max_context.get(start_index, False):
                continue
            if end_index < start_index:
                continue
            length = end_index - start_index + 1
            if length > args.max_answer_length:
                continue
            prelim_predictions.append(
                _PrelimPrediction(
                    start_index=start_index,
                    end_index=end_index,
                    start_logit=result.start_logits[start_index],
                    end_logit=result.end_logits[end_index]))
    return prelim_predictions

def match_results(examples, features, results):
    unique_f_ids = set([f.unique_id for f in features])
    unique_r_ids = set([r.unique_id for r in results])
    matching_ids = unique_f_ids & unique_r_ids
    features = [f for f in features if f.unique_id in matching_ids]
    results = [r for r in results if r.unique_id in matching_ids]
    features.sort(key=lambda x: x.unique_id)
    results.sort(key=lambda x: x.unique_id)

    for f, r in zip(features, results): #original code assumes strict ordering of examples. TODO: rewrite this
        yield examples[f.example_index], f, r

def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.

    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        if verbose_logging:
            logger.info(
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        if verbose_logging:
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
                        orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in tok_ns_to_s_map.items():
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        if verbose_logging:
            logger.info("Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        if verbose_logging:
            logger.info("Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def _get_best_indices(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indices = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indices.append(index_and_score[i][0])
    return best_indices


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs



from apex.multi_tensor_apply import multi_tensor_applier
class GradientClipper:
    """
    Clips gradient norm of an iterable of parameters. 
    """
    def __init__(self, max_grad_norm):
        self.max_norm = max_grad_norm
        if multi_tensor_applier.available:
            import amp_C
            self._overflow_buf = torch.cuda.IntTensor([0])
            self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm
            self.multi_tensor_scale = amp_C.multi_tensor_scale
        else:
            raise RuntimeError('Gradient clipping requires cuda extensions')

    def step(self, parameters):
        l = [p.grad for p in parameters if p.grad is not None]
        total_norm, _ = multi_tensor_applier(self.multi_tensor_l2norm, self._overflow_buf, [l], False)
        total_norm = total_norm.item()
        if (total_norm == float('inf')): return
        clip_coef = self.max_norm / (total_norm + 1e-6)
        if clip_coef < 1:
            multi_tensor_applier(self.multi_tensor_scale, self._overflow_buf, [l, l], clip_coef)


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                             "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")
    parser.add_argument("--init_checkpoint",
                        default=None,
                        type=str,
                        required=True,
                        help="The checkpoint file from pretraining")

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1.0, type=float,
                        help="Total number of training steps to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=os.getenv('LOCAL_RANK', -1),
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Mixed precision training")
    parser.add_argument('--amp',
                        default=False,
                        action='store_true',
                        help="Mixed precision training")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
    parser.add_argument('--vocab_file',
                        type=str, default=None, required=True,
                        help="Vocabulary mapping/file BERT was pretrainined on")
    parser.add_argument("--config_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The BERT model config")
    parser.add_argument('--log_freq',
                        type=int, default=50,
                        help='frequency of logging loss.')
    parser.add_argument('--json-summary', type=str, default="results/dllogger.json",
                        help='If provided, the json summary will be written to'
                             'the specified file.')
    parser.add_argument("--eval_script",
                        help="Script to evaluate squad predictions",
                        default="evaluate.py",
                        type=str)
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to use evaluate accuracy of predictions")
    parser.add_argument("--use_env",
                        action='store_true',
                        help="Whether to read local rank from ENVVAR")
    parser.add_argument('--skip_checkpoint',
                        default=False,
                        action='store_true',
                        help="Whether to save checkpoints")
    parser.add_argument('--disable-progress-bar',
                        default=False,
                        action='store_true',
                        help='Disable tqdm progress bar')
    parser.add_argument("--skip_cache",
                        default=False,
                        action='store_true',
                        help="Whether to cache train features")
    parser.add_argument("--cache_dir",
                        default=None,
                        type=str,
                        help="Location to cache train feaures. Will default to the dataset directory")

    args = parser.parse_args()
    args.fp16 = args.fp16 or args.amp    

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        n_gpu = 1

    if is_main_process():
        dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
                                                           filename=args.json_summary),
                                dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)])
    else:
        dllogger.init(backends=[])
        
    print("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
                                device, n_gpu, bool(args.local_rank != -1), args.fp16))

    dllogger.log(step="PARAMETER", data={"Config": [str(args)]})

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    dllogger.log(step="PARAMETER", data={"SEED": args.seed})

    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and os.listdir(args.output_dir)!=['logfile.txt']:
        print("WARNING: Output directory {} already exists and is not empty.".format(args.output_dir), os.listdir(args.output_dir))
    if not os.path.exists(args.output_dir) and is_main_process():
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer(args.vocab_file, do_lower_case=args.do_lower_case, max_len=512) # for bert large
    # tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)
    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForQuestionAnswering(config)
    # model = modeling.BertForQuestionAnswering.from_pretrained(args.bert_model,
                # cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)))
    dllogger.log(step="PARAMETER", data={"loading_checkpoint": True})
    model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')["model"], strict=False)
    dllogger.log(step="PARAMETER", data={"loaded_checkpoint": True})
    model.to(device)
    num_weights = sum([p.numel() for p in model.parameters() if p.requires_grad])
    dllogger.log(step="PARAMETER", data={"model_weights_num":num_weights})

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    if args.do_train:
        if args.fp16:
            try:
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False)

            if args.loss_scale == 0:
                model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False,
                                                      loss_scale="dynamic")
            else:
                model, optimizer = amp.initialize(model, optimizer, opt_level="O2", keep_batchnorm_fp32=False, loss_scale=args.loss_scale)
            if args.do_train:
                scheduler = LinearWarmUpScheduler(optimizer, warmup=args.warmup_proportion, total_steps=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                    lr=args.learning_rate,
                                    warmup=args.warmup_proportion,
                                    t_total=num_train_optimization_steps)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    if args.do_train:

        if args.cache_dir is None:
            cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}'.format(
                list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride),
                str(args.max_query_length))
        else:
            cached_train_features_file = args.cache_dir.strip('/') + '/' + args.train_file.split('/')[-1] + '_{0}_{1}_{2}_{3}'.format(
                list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride),
                str(args.max_query_length))

        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)

            if not args.skip_cache and is_main_process():
                dllogger.log(step="PARAMETER", data={"Cached_train features_file": cached_train_features_file})
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        dllogger.log(step="PARAMETER", data={"train_start": True})
        dllogger.log(step="PARAMETER", data={"training_samples": len(train_examples)})
        dllogger.log(step="PARAMETER", data={"training_features": len(train_features)})
        dllogger.log(step="PARAMETER", data={"train_batch_size":args.train_batch_size})
        dllogger.log(step="PARAMETER", data={"steps":num_train_optimization_steps})
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size * n_gpu)

        model.train()
        gradClipper = GradientClipper(max_grad_norm=1.0)
        final_loss = None
        train_start = time.time()
        for epoch in range(int(args.num_train_epochs)):
            train_iter = tqdm(train_dataloader, desc="Iteration", disable=args.disable_progress_bar) if is_main_process() else train_dataloader
            for step, batch in enumerate(train_iter):
                # Terminate early for benchmarking
                
                if args.max_steps > 0 and global_step > args.max_steps:
                    break

                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                start_logits, end_logits = model(input_ids, segment_ids, input_mask)
                # If we are on multi-GPU, split add a dimension
                if len(start_positions.size()) > 1:
                    start_positions = start_positions.squeeze(-1)
                if len(end_positions.size()) > 1:
                    end_positions = end_positions.squeeze(-1)
                # sometimes the start/end positions are outside our model inputs, we ignore these terms
                ignored_index = start_logits.size(1)
                start_positions.clamp_(0, ignored_index)
                end_positions.clamp_(0, ignored_index)

                loss_fct = torch.nn.CrossEntropyLoss(ignore_index=ignored_index)
                start_loss = loss_fct(start_logits, start_positions)
                end_loss = loss_fct(end_logits, end_positions)
                loss = (start_loss + end_loss) / 2
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                
                # gradient clipping  
                gradClipper.step(amp.master_params(optimizer))         
 
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 :
                        # modify learning rate with special warm up for BERT which FusedAdam doesn't do
                        scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                final_loss = loss.item()
                if step % args.log_freq == 0:
                    dllogger.log(step=(epoch, global_step,), data={"step_loss": final_loss,
                                                                   "learning_rate": optimizer.param_groups[0]['lr']})

        time_to_train = time.time() - train_start

    if args.do_train and is_main_process() and not args.skip_checkpoint:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, modeling.WEIGHTS_NAME)
        torch.save({"model":model_to_save.state_dict()}, output_model_file)
        output_config_file = os.path.join(args.output_dir, modeling.CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

    if args.do_predict and (args.local_rank == -1 or is_main_process()):

        if not args.do_train and args.fp16:
            model.half()

        eval_examples = read_squad_examples(
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        dllogger.log(step="PARAMETER", data={"infer_start": True})
        dllogger.log(step="PARAMETER", data={"eval_samples": len(eval_examples)})
        dllogger.log(step="PARAMETER", data={"eval_features": len(eval_features)})
        dllogger.log(step="PARAMETER", data={"predict_batch_size": args.predict_batch_size})

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        infer_start = time.time()
        model.eval()
        all_results = []
        dllogger.log(step="PARAMETER", data={"eval_start": True})
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.disable_progress_bar):
            if len(all_results) % 1000 == 0:
                dllogger.log(step="PARAMETER", data={"sample_number": len(all_results)})
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))

        time_to_infer = time.time() - infer_start
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")

        answers, nbest_answers = get_answers(eval_examples, eval_features, all_results, args)
        with open(output_prediction_file, "w") as f:
            f.write(json.dumps(answers, indent=4) + "\n")
        with open(output_nbest_file, "w") as f:
            f.write(json.dumps(nbest_answers, indent=4) + "\n")

        # output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
        # write_predictions(eval_examples, eval_features, all_results,
        #                   args.n_best_size, args.max_answer_length,
        #                   args.do_lower_case, output_prediction_file,
        #                   output_nbest_file, output_null_log_odds_file, args.verbose_logging,
        #                   args.version_2_with_negative, args.null_score_diff_threshold)

        if args.do_eval and is_main_process():
            import sys
            import subprocess
            eval_out = subprocess.check_output([sys.executable, args.eval_script,
                                              args.predict_file, args.output_dir + "/predictions.json"])
            scores = str(eval_out).strip()
            exact_match = float(scores.split(":")[1].split(",")[0])
            f1 = float(scores.split(":")[2].split("}")[0])

    if args.do_train:
        gpu_count = n_gpu
        if torch.distributed.is_initialized():
            gpu_count = torch.distributed.get_world_size()

        if args.max_steps == -1:
            dllogger.log(step=tuple(), data={"e2e_train_time": time_to_train,
                                             "training_sequences_per_second": len(train_features) * args.num_train_epochs / time_to_train,
                                             "final_loss": final_loss})
        else:
            dllogger.log(step=tuple(), data={"e2e_train_time": time_to_train,
                                             "training_sequences_per_second": args.train_batch_size * args.gradient_accumulation_steps \
                                              * args.max_steps * gpu_count / time_to_train,
                                              "final_loss": final_loss})
    if args.do_predict and is_main_process():
        dllogger.log(step=tuple(), data={"e2e_inference_time": time_to_infer,
                                                 "inference_sequences_per_second": len(eval_features) / time_to_infer})
    if args.do_eval and is_main_process():
        dllogger.log(step=tuple(), data={"exact_match": exact_match, "F1": f1})

if __name__ == "__main__":
    main()
    dllogger.flush()