README_old.md 4.67 KB
Newer Older
hepj987's avatar
hepj987 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# 简介

使用PyTorch框架计算Bert网络。

* BERT 的训练分为pre-train和fine-tune两种,pre-train训练分为两个phrase。

* BERT 的推理可基于不同数据集进行精度验证
* 数据生成、模型转换相关细节见  [README.md](http://10.0.100.3/dcutoolkit/deeplearing/dlexamples/-/blob/develop/PyTorch/NLP/BERT/scripts/README.md)

# 运行示例

目前提供基于wiki英文数据集 pre-train 两个阶段的训练和基于squad数据集fine-tune 训练的代码示例,

## pre-train phrase1

|参数名|解释|示例|
|:---:|:---:|:---:|
|PATH_PHRASE1|第一阶段训练数据集路径|/workspace/lower_case_1_seq_len_128_max_pred_20_masked_lm_prob_0.<br>15_random_seed_12345_dupe_factor_5_shard_1472_test_split_10
|OUTPUT_DIR|输出路径|/workspace/results
|PATH_CONFIG|confing路径|/workspace/bert_large_uncased
|PATH_PHRASE2|第一阶段训练数据集路径|/workspace/lower_case_1_seq_len_512_max_pred_80_masked_lm_prob_0.<br>15_random_seed_12345_dupe_factor_5_shard_1472_test_split_10
<br>

### 单卡
```
export HIP_VISIBLE_DEVICES=0
python3 run_pretraining_v1.py  \
    --input_dir=${PATH_PHRASE1}    \
    --output_dir=${OUTPUT_DIR}/checkpoints1 \
    --config_file=${PATH_CONFIG}bert_config.json \
    --bert_model=bert-large-uncased \
    --train_batch_size=16 \
    --max_seq_length=128 \
    --max_predictions_per_seq=20 \
    --max_steps=100000 \
    --warmup_proportion=0.0 \
    --num_steps_per_checkpoint=20000 \
    --learning_rate=4.0e-4 \
    --seed=12439 \
    --gradient_accumulation_steps=1 \
    --allreduce_post_accumulation \
    --do_train \
    --json-summary dllogger.json
```

### 多卡

* 方法一
```
export HIP_VISIBLE_DEVICES=0,1,2,3
python3 run_pretraining_v1.py  \
    --input_dir=${PATH_PHRASE1}    \
    --output_dir=${OUTPUT_DIR}/checkpoints \
    --config_file=${PATH_CONFIG}bert_config.json \
    --bert_model=bert-large-uncased \
    --train_batch_size=16 \
    --max_seq_length=128 \
    --max_predictions_per_seq=20 \
    --max_steps=100000 \
    --warmup_proportion=0.0 \
    --num_steps_per_checkpoint=20000 \
    --learning_rate=4.0e-4 \
    --seed=12439 \
    --gradient_accumulation_steps=1 \
    --allreduce_post_accumulation \
    --do_train \
    --json-summary dllogger.json
```
* 方法二

hostfile:
```
node1 slots=4
node2 slots=4
```

```
#scripts/run_pretrain.sh 脚本默认每个节点四块卡
cd scripts; bash run_pretrain.sh
```


## pre-train phrase2

### 单卡
```
HIP_VISIBLE_DEVICES=0
python3 run_pretraining_v1.py
   --input_dir=${PATH_PHRASE2} \
   --output_dir=${OUTPUT_DIR}/checkpoints2 \
   --config_file=${PATH_CONFIG}bert_config.json \
   --bert_model=bert-large-uncased \
   --train_batch_size=4 \
   --max_seq_length=512 \
   --max_predictions_per_seq=80 \
   --max_steps=400000 \
   --warmup_proportion=0.128 \
   --num_steps_per_checkpoint=200000 \
   --learning_rate=4e-3 \
   --seed=12439 \
   --gradient_accumulation_steps=1 \
   --allreduce_post_accumulation \
   --do_train \
   --phase2 \
   --phase1_end_step=0 \
   --json-summary dllogger.json
```

### 多卡

* 方法一
```
export HIP_VISIBLE_DEVICES=0,1,2,3
python3 run_pretraining_v1.py
   --input_dir=${PATH_PHRASE2} \
   --output_dir=${OUTPUT_DIR}/checkpoints2 \
   --config_file=${PATH_CONFIG}bert_config.json \
   --bert_model=bert-large-uncased \
   --train_batch_size=4 \
   --max_seq_length=512 \
   --max_predictions_per_seq=80 \
   --max_steps=400000 \
   --warmup_proportion=0.128 \
   --num_steps_per_checkpoint=200000 \
   --learning_rate=4e-3 \
   --seed=12439 \
   --gradient_accumulation_steps=1 \
   --allreduce_post_accumulation \
   --do_train \
   --phase2 \
   --phase1_end_step=0 \
   --json-summary dllogger.json
```
* 方法二

hostfile:
```
node1 slots=4
node2 slots=4
```

```
#scripts/run_pretrain2.sh 脚本默认每个节点四块卡
cd scripts; bash run_pretrain2.sh
```



## fine-tune 训练

### 单卡
```
python3 run_squad_v1.py \
  --train_file squad/v1.1/train-v1.1.json \
  --init_checkpoint model.ckpt-28252.pt \
  --vocab_file vocab.txt \
  --output_dir SQuAD \
  --config_file bert_config.json \
  --bert_model=bert-large-uncased \
  --do_train \
  --train_batch_size 1 \
  --gpus_per_node 1 
```
### 多卡

hostfile:
```
node1 slots=4
node2 slots=4
```

```
#scripts/run_squad_1.sh 脚本默认每个节点四块卡
bash run_squad_1.sh
```



# 参考资料
[https://github.com/mlperf/training_results_v0.7/blob/master/NVIDIA/benchmarks/bert/implementations/pytorch](https://github.com/mlperf/training_results_v0.7/blob/master/NVIDIA/benchmarks/bert/implementations/pytorch)
[https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT](https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT)