test_vit.py 6.3 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import unittest

import oneflow as flow
import oneflow.unittest
from flowvision.loss.cross_entropy import SoftTargetCrossEntropy

import libai.utils.distributed as dist
from configs.common.models.vit.vit_small_patch16_224 import model
from libai.config import LazyCall, LazyConfig
from libai.data.datasets import CIFAR10Dataset
from libai.engine import DefaultTrainer
from libai.engine.default import _check_batch_size
from libai.utils.file_utils import get_data_from_cache
from libai.utils.logger import setup_logger

DATA_URL = "https://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/cifar10/cifar-10-python.tar.gz"  # noqa

DATA_MD5 = "c58f30108f718f92721af3b95e74349a"

TEST_OUTPUT = os.path.join(os.getenv("TEST_OUTPUT", "output_unittest"), "test_vit")

setup_logger(distributed_rank=dist.get_rank())


class TestViTModel(flow.unittest.TestCase):
    def setUp(self) -> None:
        cache_dir = os.path.join(os.getenv("ONEFLOW_TEST_CACHE_DIR", "./data_test"), "vit_data")

        cfg = LazyConfig.load("configs/vit_imagenet.py")

        # set model
        cfg.model = model
        cfg.model.num_classes = 10
        cfg.model.depth = 6
        cfg.model.loss_func = LazyCall(SoftTargetCrossEntropy)()

        # prepare data path
        if dist.get_local_rank() == 0:
            get_data_from_cache(DATA_URL, cache_dir, md5=DATA_MD5)
            os.makedirs(TEST_OUTPUT, exist_ok=True)
        dist.synchronize()

        data_path = get_data_from_cache(DATA_URL, cache_dir, md5=DATA_MD5)

        cfg.dataloader.train.dataset[0]._target_ = CIFAR10Dataset
        cfg.dataloader.train.dataset[0].root = "/".join(data_path.split("/")[:-1])
        cfg.dataloader.train.dataset[0].download = True
        cfg.dataloader.train.num_workers = 0

        cfg.dataloader.test[0].dataset._target_ = CIFAR10Dataset
        cfg.dataloader.test[0].dataset.train = False
        cfg.dataloader.test[0].dataset.root = "/".join(data_path.split("/")[:-1])
        cfg.dataloader.test[0].dataset.download = True
        cfg.dataloader.test[0].num_workers = 0

        # refine mixup cfg
        cfg.dataloader.train.mixup_func.num_classes = 10

        # set training config
        cfg.train.train_epoch = 0
        cfg.train.train_iter = 10
        cfg.train.evaluation.eval_period = 10
        cfg.train.evaluation.eval_iter = 10
        cfg.train.log_period = 1
        cfg.train.train_micro_batch_size = 8
        cfg.train.num_accumulation_steps = 1
        cfg.train.resume = False
        cfg.train.output_dir = TEST_OUTPUT
        cfg.train.activation_checkpoint.enabled = True
        cfg.train.amp.enabled = True
        cfg.train.rdma_enabled = False

        self.cfg = cfg

    @classmethod
    def tearDownClass(cls) -> None:
        if os.path.isdir(TEST_OUTPUT) and dist.get_local_rank() == 0:
            shutil.rmtree(TEST_OUTPUT)

    @flow.unittest.skip_unless_1n4d()
    def test_vit_eager_with_data_tensor_parallel(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        self.cfg.train.dist.tensor_parallel_size = 2
        # pipeline parallelism not supported in eager global now!
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = False
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_vit_eager_with_pipeline_parallel(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 1
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 4
        self.cfg.train.dist.pipeline_num_layers = self.cfg.model.depth

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = False
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_vit_graph_with_data_tensor_parallel(self):
        self.cfg.train.num_accumulation_steps = 1

        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        self.cfg.train.dist.tensor_parallel_size = 2
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_vit_graph_with_data_tensor_pipeline_parallel(self):
        self.cfg.train.num_accumulation_steps = 4
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        # change to 2 when 2d sbp bugfix
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 2
        self.cfg.train.dist.pipeline_num_layers = self.cfg.model.depth

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    @unittest.skip("There are still bugs in ZeRO")
    def test_vit_with_zero(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 4
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        self.cfg.train.zero_optimization.enabled = True
        self.cfg.train.zero_optimization.stage = 3
        trainer = DefaultTrainer(self.cfg)
        trainer.train()


if __name__ == "__main__":
    unittest.main()