test_bert.py 6.63 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import shutil
import unittest

import oneflow as flow
import oneflow.unittest

from libai.config import LazyConfig
from libai.engine import DefaultTrainer
from libai.engine.default import _check_batch_size
from libai.utils import distributed as dist
from libai.utils.file_utils import get_data_from_cache
from libai.utils.logger import setup_logger

VOCAB_URL = "https://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/bert_dataset/bert-base-chinese-vocab.txt"  # noqa
BIN_DATA_URL = "https://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/bert_dataset/loss_compara_content_sentence.bin"  # noqa
IDX_DATA_URL = "https://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/bert_dataset/loss_compara_content_sentence.idx"  # noqa

VOCAB_MD5 = "3b5b76c4aef48ecf8cb3abaafe960f09"
BIN_DATA_MD5 = "b842467bd5ea7e52f7a612ea6b4faecc"
IDX_DATA_MD5 = "cf5963b8543f0a7a867361eb980f0372"

TEST_OUTPUT = os.path.join(os.getenv("TEST_OUTPUT", "output_unittest"), "test_bert")


setup_logger(distributed_rank=dist.get_rank())


class TestBertModel(flow.unittest.TestCase):
    def setUp(self) -> None:
        cache_dir = os.path.join(os.getenv("ONEFLOW_TEST_CACHE_DIR", "./data_test"), "bert_data")

        cfg = LazyConfig.load("configs/bert_large_pretrain.py")

        # prepare dataset
        if dist.get_local_rank() == 0:
            # download dataset on main process of each node
            get_data_from_cache(VOCAB_URL, cache_dir, md5=VOCAB_MD5)
            get_data_from_cache(BIN_DATA_URL, cache_dir, md5=BIN_DATA_MD5)
            get_data_from_cache(IDX_DATA_URL, cache_dir, md5=IDX_DATA_MD5)
            os.makedirs(TEST_OUTPUT, exist_ok=True)
        dist.synchronize()

        vocab_path = get_data_from_cache(VOCAB_URL, cache_dir, md5=VOCAB_MD5)
        data_prefix_path = get_data_from_cache(BIN_DATA_URL, cache_dir, md5=BIN_DATA_MD5)
        data_prefix = data_prefix_path[:-4]

        # set tokenizer and data config
        cfg.tokenization.tokenizer.vocab_file = vocab_path
        cfg.dataloader.train.dataset[0].data_prefix = data_prefix
        cfg.dataloader.train.dataset[0].indexed_dataset.data_prefix = data_prefix
        # FIXME(RenTianhe): fix dataloader worker bug
        cfg.dataloader.train.num_workers = 0

        # set training config
        cfg.train.train_epoch = 0
        cfg.train.train_iter = 10
        cfg.train.evaluation.eval_period = 10
        cfg.train.evaluation.eval_iter = 10
        cfg.train.log_period = 1
        cfg.train.train_micro_batch_size = 8
        cfg.train.test_micro_batch_size = 4
        cfg.train.num_accumulation_steps = 1
        cfg.train.resume = False
        cfg.train.output_dir = TEST_OUTPUT

        # set model
        cfg.model.cfg.num_attention_heads = 8
        cfg.model.cfg.hidden_size = 384
        cfg.model.cfg.hidden_layers = 4
        cfg.train.activation_checkpoint.enabled = True
        cfg.train.amp.enabled = True

        cfg.train.rdma_enabled = False

        self.cfg = cfg

    @classmethod
    def tearDownClass(cls) -> None:
        if os.path.isdir(TEST_OUTPUT) and dist.get_local_rank() == 0:
            shutil.rmtree(TEST_OUTPUT)

    @flow.unittest.skip_unless_1n4d()
    def test_bert_eager_with_data_tensor_parallel(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        self.cfg.train.dist.tensor_parallel_size = 2
        # pipeline parallelism not supported in eager global now!
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = False
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_bert_eager_with_pipeline_parallel(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 1
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 4
        self.cfg.train.dist.pipeline_num_layers = self.cfg.model.cfg.hidden_layers

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = False
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_bert_graph_with_data_tensor_parallel(self):
        self.cfg.train.num_accumulation_steps = 1
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        self.cfg.train.dist.tensor_parallel_size = 2
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    def test_bert_graph_with_data_tensor_pipeline_parallel(self):
        self.cfg.train.num_accumulation_steps = 4
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 2
        # change to 2 when 2d sbp bugfix
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 2
        self.cfg.train.dist.pipeline_num_layers = self.cfg.model.cfg.hidden_layers

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        trainer = DefaultTrainer(self.cfg)
        trainer.train()

    @flow.unittest.skip_unless_1n4d()
    @unittest.skip("There are still bugs in ZeRO")
    def test_bert_with_zero(self):
        # set distributed config
        self.cfg.train.dist.data_parallel_size = 4
        self.cfg.train.dist.tensor_parallel_size = 1
        self.cfg.train.dist.pipeline_parallel_size = 1

        dist.setup_dist_util(self.cfg.train.dist)
        _check_batch_size(self.cfg)

        self.cfg.graph.enabled = True
        self.cfg.train.zero_optimization.enabled = True
        self.cfg.train.zero_optimization.stage = 3
        trainer = DefaultTrainer(self.cfg)
        trainer.train()


if __name__ == "__main__":
    unittest.main()