load_megatron_weight.py 5.17 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import oneflow as flow
import torch

from libai.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message

logger = logging.getLogger("libai." + __name__)


def convert_tensor(tensor: torch.Tensor):
    tensor = tensor.float()
    return flow.Tensor(tensor.cpu().numpy())


def change_megatron_key(state_dict):
    of_state_dict = {}

    # Language model.
    language_model = state_dict["language_model"]

    # Embedding.
    embedding = language_model["embedding"]
    of_state_dict["embeddings.vocab_embeddings.weight"] = convert_tensor(
        embedding["word_embeddings"]["weight"]
    )
    of_state_dict["embeddings.position_embeddings.weight"] = convert_tensor(
        embedding["position_embeddings"]["weight"]
    )
    of_state_dict["embeddings.tokentype_embeddings.weight"] = convert_tensor(
        embedding["tokentype_embeddings"]["weight"]
    )

    # Encoder.
    encoder = language_model["encoder"]
    for key, value in encoder.items():
        # Change layers.0.input_layernorm.weight -> encoder.layers_0.input_layernorm.weight
        key = "encoders." + key.replace("layers.", "")
        if key.startswith("encoders.final_layernorm"):
            key = key.replace("encoders.", "")
        of_state_dict[key] = convert_tensor(value)

    # Pooler.
    pooler = language_model["pooler"]
    of_state_dict["pooler.dense.weight"] = convert_tensor(pooler["dense.weight"])
    of_state_dict["pooler.dense.bias"] = convert_tensor(pooler["dense.bias"])

    # LM head.
    lm_head = state_dict["lm_head"]
    of_state_dict["cls.predictions.dense.weight"] = convert_tensor(lm_head["dense.weight"])
    of_state_dict["cls.predictions.dense.bias"] = convert_tensor(lm_head["dense.bias"])

    of_state_dict["cls.predictions.layernorm.weight"] = convert_tensor(lm_head["layernorm.weight"])
    of_state_dict["cls.predictions.layernorm.bias"] = convert_tensor(lm_head["layernorm.bias"])

    of_state_dict["lm_logits.bias"] = convert_tensor(lm_head["bias"])

    # Binary head.
    binary_head = state_dict["binary_head"]
    of_state_dict["cls.seq_relationship.weight"] = convert_tensor(binary_head["weight"])
    of_state_dict["cls.seq_relationship.bias"] = convert_tensor((binary_head["bias"]))

    return of_state_dict


def load_tensor(tensor_lhs, tensor_rhs):
    tensor_rhs = flow.to_global(tensor_rhs, placement=tensor_lhs.placement, sbp=tensor_lhs.sbp)
    tensor_lhs.copy_(tensor_rhs)


def load_model(model: flow.nn.Module, state_dict):
    model_state_dict = model.state_dict()

    # Decide shape
    incorrect_shapes = []
    for k in list(state_dict.keys()):
        if k in model_state_dict:
            if (
                (k.find("weight") != -1)
                and (k.find("embeddings") == -1)
                and (k.find("layernorm") == -1)
            ):
                # Transpose from (M, N) -> (N, M), because the weight
                # shape in megatron and oneflow missing one transpose.
                shape_model = tuple(model_state_dict[k].shape[::-1])
            else:
                shape_model = tuple(model_state_dict[k].shape)
            shape_ckpt = tuple(state_dict[k].shape)
            if shape_model != shape_ckpt:
                incorrect_shapes.append((k, shape_ckpt, shape_model))
                state_dict.pop(k)

    unexpected_keys = []
    for key, value in state_dict.items():
        if key not in model_state_dict:
            unexpected_keys.append(key)
            continue
        model_state_dict.pop(key)
        if (
            (key.find("weight") != -1)
            and (key.find("embeddings") == -1)
            and (key.find("layernorm") == -1)
        ):
            value = flow.transpose(value, 0, 1)
        load_tensor(model.state_dict()[key], value)

    missing_keys = list(model_state_dict.keys())

    for k, shape_checkpoint, shape_model in incorrect_shapes:
        logger.warning(
            "Skip loading parameter '{}' to the model due to incompatible "
            "shapes: {} in the checkpoint but {} in the "
            "model! You might want to double check if this is expected.".format(
                k, shape_checkpoint, shape_model
            )
        )
    if missing_keys:
        logger.info(get_missing_parameters_message(missing_keys))
    if unexpected_keys:
        logger.info(get_unexpected_parameters_message(unexpected_keys))


def load_megatron_bert(model: flow.nn.Module, model_weight_path: str):
    import torch

    megatron_state_dict = torch.load(model_weight_path, map_location="cpu")["model"]
    of_state_dict = change_megatron_key(megatron_state_dict)
    load_model(model, of_state_dict)