utils_glue.py 18.4 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os

from .utils import DataProcessor, EncodePattern, InputExample, InputFeatures

logger = logging.getLogger(__name__)


def glue_convert_examples_to_features(
    examples,
    tokenizer,
    max_length,
    task=None,
    pattern=EncodePattern.bert_pattern,
    label_list=None,
    output_mode=None,
):
    if task is not None:
        processor = glue_processors[task]()
        if label_list is None:
            label_list = processor.get_labels()
            logger.info(f"Using label list {label_list} for task {task}")
        if output_mode is None:
            output_mode = glue_output_modes[task]
            logger.info(f"Using output mode {output_mode} for task {task}")

    label_map = {label: i for i, label in enumerate(label_list)}

    start_token = [] if tokenizer.start_token is None else [tokenizer.start_token]
    end_token = [] if tokenizer.end_token is None else [tokenizer.end_token]
    pad_id = tokenizer.pad_token_id

    if pattern == EncodePattern.bert_pattern:
        added_special_tokens = [2, 3]
    elif pattern == EncodePattern.roberta_pattern:
        added_special_tokens = [2, 4]
    else:
        raise KeyError("pattern is not a valid EncodePattern")

    features = []
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))

        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            _truncate_seq_pair(tokens_a, tokens_b, max_length - added_special_tokens[1])
        else:
            if len(tokens_a) > max_length - added_special_tokens[0]:
                tokens_a = tokens_a[: (max_length - added_special_tokens[0])]

        if pattern is EncodePattern.bert_pattern:
            tokens = start_token + tokens_a + end_token
            token_type_ids = [0] * len(tokens)
            if tokens_b:
                tokens += tokens_b + end_token
                token_type_ids += [1] * (len(tokens) - len(token_type_ids))
        elif pattern is EncodePattern.roberta_pattern:
            tokens = start_token + tokens_a + end_token
            token_type_ids = [0] * len(tokens)
            if tokens_b:
                tokens += end_token + tokens_b + end_token
                token_type_ids += [1] * (len(tokens) - len(token_type_ids))
        else:
            raise KeyError("pattern is not a valid EncodePattern")

        input_ids = tokenizer.convert_tokens_to_ids(tokens)
        attention_mask = [1] * len(input_ids)

        padding_length = max_length - len(input_ids)
        input_ids = input_ids + ([pad_id] * padding_length)
        attention_mask = attention_mask + ([0] * padding_length)
        token_type_ids = token_type_ids + ([0] * padding_length)

        label = None
        if example.label is not None:
            if output_mode == "classification":
                label = label_map[example.label]
            elif output_mode == "regression":
                label = float(example.label)

        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
            logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label))

        features.append(
            InputFeatures(
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                labels=label,
            )
        )

    return features


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version).
    Sentence pair classification task.
    Determine whether the two sentences have the same meaning.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{i}"
            text_a = line[3]
            text_b = line[4]
            label = None if set_type == "test" else line[0]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version).
    Sentence pair classification task.
    Given a premise sentence and a hypothesis sentence,
    the task is to predict whether the premise entails the hypothesis (entailment),
    contradicts the hypothesis (contradiction), or neither (neutral).
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched"
        )

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched"
        )

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            text_a = line[8]
            text_b = line[9]
            label = None if set_type.startswith("test") else line[-1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class MnliMismatchedProcessor(MnliProcessor):
    """Processor for the MultiNLI Mismatched data set (GLUE version)."""

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
            "dev_mismatched",
        )

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")),
            "test_mismatched",
        )


class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version).
    Single sentence classification task.
    Each example is a sequence of words annotated with whether it is a grammatical English sentence.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        test_mode = set_type == "test"
        if test_mode:
            lines = lines[1:]
        text_index = 1 if test_mode else 3
        examples = []
        for (i, line) in enumerate(lines):
            guid = f"{set_type}-{i}"
            text_a = line[text_index]
            label = None if test_mode else line[1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


class Sst2Processor(DataProcessor):
    """Processor for the SST-2 data set (GLUE version).
    Single sentence classification task.
    The task is to predict the sentiment of a given sentence.
    We use the two-way (positive/negative) class split, and use only sentence-level labels.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        text_index = 1 if set_type == "test" else 0
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{i}"
            text_a = line[text_index]
            label = None if set_type == "test" else line[1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


class StsbProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version).
    Sentence pair task but it is a regression task.
    This task is to predict the similarity score of two sentences.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return [None]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            text_a = line[7]
            text_b = line[8]
            label = None if set_type == "test" else line[-1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QqpProcessor(DataProcessor):
    """Processor for the QQP data set (GLUE version).
    Sentence pair classification task.
    The task is to determine whether a pair of questions are semantically equivalent.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        test_mode = set_type == "test"
        q1_index = 1 if test_mode else 3
        q2_index = 2 if test_mode else 4
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            try:
                text_a = line[q1_index]
                text_b = line[q2_index]
                label = None if test_mode else line[5]
            except IndexError:
                continue
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QnliProcessor(DataProcessor):
    """Processor for the QNLI data set (GLUE version).
    Sentence pair classification task.
    The task is to determine whether the context sentence contains the answer to the question.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            text_a = line[1]
            text_b = line[2]
            label = None if set_type == "test" else line[-1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class RteProcessor(DataProcessor):
    """Processor for the RTE data set (GLUE version).
    Sentence pair classification task.
    Recognizing Textual Entailment.
    Predict whether the two sentences is entailment or not entailment (neutral and contradiction).
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            text_a = line[1]
            text_b = line[2]
            label = None if set_type == "test" else line[-1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class WnliProcessor(DataProcessor):
    """Processor for the WNLI data set (GLUE version).
    Sentence pair classification task.
    The task is to predict if the sentence with the pronoun substituted is entailed
    by the original sentence.
    """

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training, dev and test sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = f"{set_type}-{line[0]}"
            text_a = line[1]
            text_b = line[2]
            label = None if set_type == "test" else line[-1]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


glue_tasks_num_labels = {
    "cola": 2,
    "mnli": 3,
    "mrpc": 2,
    "sst-2": 2,
    "sts-b": 1,
    "qqp": 2,
    "qnli": 2,
    "rte": 2,
    "wnli": 2,
}

glue_processors = {
    "cola": ColaProcessor,
    "mnli": MnliProcessor,
    "mnli-mm": MnliMismatchedProcessor,
    "mrpc": MrpcProcessor,
    "sst-2": Sst2Processor,
    "sts-b": StsbProcessor,
    "qqp": QqpProcessor,
    "qnli": QnliProcessor,
    "rte": RteProcessor,
    "wnli": WnliProcessor,
}

glue_output_modes = {
    "cola": "classification",
    "mnli": "classification",
    "mnli-mm": "classification",
    "mrpc": "classification",
    "sst-2": "classification",
    "sts-b": "regression",
    "qqp": "classification",
    "qnli": "classification",
    "rte": "classification",
    "wnli": "classification",
}