weight_convert.py 10.4 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse

import oneflow as flow
import torch

from libai.config import LazyConfig


def parse_args():
    parser = argparse.ArgumentParser(description="MT5 Weight Convertor")
    parser.add_argument(
        "--oneflow_state_dict_path", type=str, help="The path of mt5's checkpoint in LiBai"
    )
    parser.add_argument(
        "--config_path",
        type=str,
        default="projects/T5/configs/mt5_pretrain.py",
        help="The path of the training config",
    )
    parser.add_argument("--save_path", type=str, default="projects/T5/pytorch_model.bin")
    return parser.parse_args()


def fix_qkv_ordering(qkv, head_size, num_heads, hidden_size=None):
    hidden_size = (head_size * num_heads) if hidden_size is None else hidden_size
    num_of_qkv = qkv.shape[0] // (head_size * num_heads)

    qkv = qkv.view(-1)
    qkv = qkv.view(num_heads, num_of_qkv, head_size, hidden_size)
    qkv = qkv.permute(1, 0, 2, 3).contiguous()
    qkv = qkv.view(num_of_qkv * head_size * num_heads, hidden_size)
    return qkv


def convert_tensor(tensor):
    return torch.tensor(tensor.detach().to_numpy(), dtype=torch.float32)


def convert_state_dict(oneflow_state_dict_path, libai_cfg, prefix="t5_model."):
    oneflow_state_dict = flow.load(oneflow_state_dict_path)
    torch_state_dict = {}
    # Get configs
    num_heads = libai_cfg.get("num_attention_heads")
    hidden_size = libai_cfg.get("hidden_size")
    head_size = libai_cfg.get("head_size", None)

    if head_size is None:
        head_size = int(hidden_size / num_heads)

    layer_idx = 3 if len(prefix) > 1 else 2
    enc_dec_idx = 1 if len(prefix) > 1 else 0
    op_idx = 4 if len(prefix) > 1 else 3

    # Convert T5's Embedding layers.
    x = convert_tensor(oneflow_state_dict.pop(prefix + "embedding.word_embeddings.weight"))
    new_key = "shared.weight"
    torch_state_dict[new_key] = x
    new_key = "encoder.embed_tokens.weight"
    torch_state_dict[new_key] = x
    new_key = "decoder.embed_tokens.weight"
    torch_state_dict[new_key] = x

    # Convert T5's final_layer_norm
    new_key = "encoder.final_layer_norm.weight"
    torch_state_dict[new_key] = convert_tensor(
        oneflow_state_dict.pop(prefix + "encoder.final_layernorm.weight")
    )
    new_key = "decoder.final_layer_norm.weight"
    torch_state_dict[new_key] = convert_tensor(
        oneflow_state_dict.pop(prefix + "decoder.final_layernorm.weight")
    )

    old_keys = list(oneflow_state_dict.keys())

    # Convert T5's lm_head
    new_key = "lm_head.weight"
    if prefix + new_key in old_keys:
        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(prefix + new_key))

    for key in old_keys:
        keys = key.split(".")
        if op_idx > len(keys):
            continue
        layers = keys[layer_idx]
        enc_dec = keys[enc_dec_idx]
        op_name = keys[op_idx]

        if keys[op_idx + 1] == "relative_attention_bias":
            new_key = enc_dec + ".block.0.layer.0.SelfAttention.relative_attention_bias.weight"
            torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

        # Convert T5's Encoder layers.
        if enc_dec == "encoder":
            if op_name == "self_attention":
                if keys[op_idx + 1] == "query_key_value":
                    x = oneflow_state_dict.pop(key)
                    x = fix_qkv_ordering(x, head_size, num_heads, hidden_size)
                    q, k, v = flow.chunk(x, chunks=3, dim=0)

                    new_key = "encoder.block." + layers + ".layer.0.SelfAttention.q.weight"
                    torch_state_dict[new_key] = convert_tensor(q)
                    new_key = new_key.replace("q", "k")
                    torch_state_dict[new_key] = convert_tensor(k)
                    new_key = new_key.replace("k", "v")
                    torch_state_dict[new_key] = convert_tensor(v)
                if keys[op_idx + 1] == "dense":
                    new_key = "encoder.block." + layers + ".layer.0.SelfAttention.o.weight"
                    torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "input_layernorm":
                new_key = "encoder.block." + layers + ".layer.0.layer_norm.weight"
                torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "post_attention_layernorm":
                new_key = "encoder.block." + layers + ".layer.1.layer_norm.weight"
                torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "mlp":
                if libai_cfg.get("model_type") == "mt5":
                    if keys[op_idx + 1] == "wi_0":
                        new_key = "encoder.block." + layers + ".layer.1.DenseReluDense.wi_0.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "wi_1":
                        new_key = "encoder.block." + layers + ".layer.1.DenseReluDense.wi_1.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "wo":
                        new_key = "encoder.block." + layers + ".layer.1.DenseReluDense.wo.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                elif libai_cfg.get("model_type") == "t5":
                    if keys[op_idx + 1] == "dense_h_to_4h":
                        new_key = "encoder.block." + layers + ".layer.1.DenseReluDense.wi.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "dense_4h_to_h":
                        new_key = "encoder.block." + layers + ".layer.1.DenseReluDense.wo.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

        # Convert T5's decoder Layers.
        elif enc_dec == "decoder":
            if op_name == "self_attention":
                if keys[op_idx + 1] == "query_key_value":
                    x = oneflow_state_dict.pop(key)
                    x = fix_qkv_ordering(x, head_size, num_heads, hidden_size)
                    q, k, v = flow.chunk(x, chunks=3, dim=0)

                    new_key = "decoder.block." + layers + ".layer.0.SelfAttention.q.weight"
                    torch_state_dict[new_key] = convert_tensor(q)
                    new_key = new_key.replace("q", "k")
                    torch_state_dict[new_key] = convert_tensor(k)
                    new_key = new_key.replace("k", "v")
                    torch_state_dict[new_key] = convert_tensor(v)
                if keys[op_idx + 1] == "dense":
                    new_key = "decoder.block." + layers + ".layer.0.SelfAttention.o.weight"
                    torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "input_layernorm":
                new_key = "decoder.block." + layers + ".layer.0.layer_norm.weight"
                torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "post_attention_layernorm":
                new_key = "decoder.block." + layers + ".layer.1.layer_norm.weight"
                torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "post_cross_attention_layernorm":
                new_key = "decoder.block." + layers + ".layer.2.layer_norm.weight"
                torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "cross_attention":
                if keys[op_idx + 1] == "query":
                    x = oneflow_state_dict.pop(key)
                    x = fix_qkv_ordering(x, head_size, num_heads, hidden_size)
                    new_key = "decoder.block." + layers + ".layer.1.EncDecAttention.q.weight"
                    torch_state_dict[new_key] = convert_tensor(x)
                if keys[op_idx + 1] == "key_value":
                    x = oneflow_state_dict.pop(key)
                    x = fix_qkv_ordering(x, head_size, num_heads, hidden_size)
                    k, v = flow.chunk(x, chunks=2, dim=0)
                    new_key = "decoder.block." + layers + ".layer.1.EncDecAttention.k.weight"
                    torch_state_dict[new_key] = convert_tensor(k)
                    new_key = new_key.replace("k", "v")
                    torch_state_dict[new_key] = convert_tensor(v)
                if keys[op_idx + 1] == "dense":
                    new_key = "decoder.block." + layers + ".layer.1.EncDecAttention.o.weight"
                    torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

            elif op_name == "mlp":
                if libai_cfg.get("model_type") == "mt5":
                    if keys[op_idx + 1] == "wi_0":
                        new_key = "decoder.block." + layers + ".layer.1.DenseReluDense.wi_0.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "wi_1":
                        new_key = "decoder.block." + layers + ".layer.1.DenseReluDense.wi_1.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "wo":
                        new_key = "decoder.block." + layers + ".layer.1.DenseReluDense.wo.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                elif libai_cfg.get("model_type") == "t5":
                    if keys[op_idx + 1] == "dense_h_to_4h":
                        new_key = "decoder.block." + layers + ".layer.1.DenseReluDense.wi.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))
                    if keys[op_idx + 1] == "dense_4h_to_h":
                        new_key = "decoder.block." + layers + ".layer.1.DenseReluDense.wo.weight"
                        torch_state_dict[new_key] = convert_tensor(oneflow_state_dict.pop(key))

    return torch_state_dict


if __name__ == "__main__":
    args = parse_args()
    oneflow_state_dict_path = args.oneflow_state_dict_path
    config_path = args.config_path
    save_path = args.save_path

    training_config = LazyConfig.load(config_path)
    model_config = training_config.model.cfg
    torch_state_dict = convert_state_dict(oneflow_state_dict_path, model_config)

    torch.save(torch_state_dict, save_path)