palm_model.py 11.1 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import oneflow as flow
import oneflow.nn.functional as F
from oneflow import einsum, nn

from libai.config import configurable
from libai.layers import LayerNorm, Linear, LMLogits, ParallelCrossEntropyLoss, VocabEmbedding
from libai.models.utils import init_method_normal
from libai.utils import distributed as dist

# rotary positional embedding
# https://arxiv.org/abs/2104.09864


class RotaryEmbedding(nn.Module):
    def __init__(self, dim, *, layer_idx=0):
        super().__init__()
        inv_freq = flow.tensor(
            1.0 / (10000 ** (np.arange(0, dim, 2, dtype=np.float32) / dim)),
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            placement=dist.get_layer_placement(layer_idx),
        )
        self.register_buffer("inv_freq", inv_freq)

    def forward(self, max_seq_len):
        seq = flow.arange(
            max_seq_len,
            dtype=self.inv_freq.dtype,
            sbp=self.inv_freq.sbp,
            placement=self.inv_freq.placement,
        )
        freqs = einsum("i , j -> i j", seq, self.inv_freq)
        return flow.cat((freqs, freqs), dim=-1)


def rotate_half(x):
    # x = rearrange(x, "... (j d) -> ... j d", j=2)
    x = x.reshape(*list(x.shape[:-1]), 2, -1)
    x1 = x[..., 0, :]
    x2 = x[..., 1, :]
    return flow.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(pos, t):
    return (t * pos.cos()) + (rotate_half(t) * pos.sin())


# feedforward
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU
# https://arxiv.org/abs/2002.05202


class SwiGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        return F.silu(gate) * x


def FeedForward(dim, mult=4, *, layer_idx=0):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        LayerNorm(dim, bias=False, layer_idx=layer_idx),
        Linear(dim, inner_dim * 2, bias=False, parallel="col", layer_idx=layer_idx),
        SwiGLU(),
        Linear(inner_dim, dim, bias=False, parallel="row", layer_idx=layer_idx),
    )


class PalmTransformerLayer(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_head: int = 64,
        num_heads: int = 8,
        ffn_mult: int = 4,
        layernorm_epsilon: float = 1e-5,
        *,
        layer_idx=0
    ):
        """PaLM transformer block with hybrid parallelism"""

        super().__init__()
        self.num_heads = num_heads
        self.dim_head = dim_head
        inner_dim = dim_head * num_heads
        self.attn_inner_dim = num_heads * dim_head
        self.ffn_inner_dim = int(ffn_mult * dim)
        self.ffn_mult = ffn_mult
        self.layer_idx = layer_idx

        # only query has multi head
        # key and value remain as single head
        self.to_q = Linear(dim, inner_dim, bias=False, parallel="col", layer_idx=layer_idx)
        self.to_kv = Linear(dim, dim_head * 2, bias=False, parallel="col", layer_idx=layer_idx)

        self.to_out = Linear(inner_dim, dim, bias=False, parallel="row", layer_idx=layer_idx)

        self.rotary_emb = RotaryEmbedding(self.dim_head, layer_idx=layer_idx)

        self.ffwd = FeedForward(dim, ffn_mult, layer_idx=layer_idx)
        self.norm = LayerNorm(dim, eps=layernorm_epsilon, bias=False, layer_idx=layer_idx)
        self.scale = dim_head ** -0.5

    def get_mask(self, seq):
        if hasattr(self, "mask") and self.mask.shape[-1] >= seq:
            return self.mask[:seq, :seq]

        mask = (
            1
            - flow.ones(
                (seq, seq),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
                placement=dist.get_layer_placement(self.layer_idx),
                dtype=flow.int8,
            ).triu(1)
        )
        self.register_buffer("mask", mask, persistent=False)
        return mask

    def get_rotary_embedding(self, seq):
        if hasattr(self, "pos_emb") and self.pos_emb.shape[-2] >= seq:
            return self.pos_emb[:seq]

        pos_emb = self.rotary_emb(seq)
        self.register_buffer("pos_emb", pos_emb, persistent=False)
        return pos_emb

    def forward(self, x):
        # move x to the stage with right placement
        x = x.to_global(placement=dist.get_layer_placement(self.layer_idx))

        bsz, seq_length = x.size()[0:2]

        # pre-layernorm
        layernorm_output = self.norm(x)

        # fused input linear layer
        query = self.to_q(layernorm_output)
        query = query.view(bsz, -1, self.num_heads, self.dim_head)
        query = query.permute(0, 2, 1, 3)

        key_value = self.to_kv(layernorm_output)
        key, value = flow.chunk(key_value, chunks=2, dim=-1)

        # apply position embedding
        positions = self.get_rotary_embedding(seq_length)
        query, key = map(lambda t: apply_rotary_pos_emb(positions, t), (query, key))

        # apply scale
        query = query * self.scale

        # calculate similarity
        attention_scores = einsum("b h s d, b j d -> b h s j", query, key)

        # apply casual mask
        attention_mask = self.get_mask(seq_length)

        attention_scores = flow.mul(attention_scores, attention_mask)
        attention_scores = attention_scores - 10000.0 * (1 - attention_mask)

        attention_weights = flow.softmax(attention_scores, dim=-1)

        # aggregate values
        attn_out = einsum("b h i j, b j d -> b h i d", attention_weights, value)

        # merge heads
        attn_out = attn_out.transpose(1, 2)
        attn_out = attn_out.view(bsz, seq_length, -1)
        # attn_out = rearrange(attn_out, "b h s d -> b s (h d)")

        attn_out = self.to_out(attn_out)

        # feedforward
        out = self.ffwd(x) + attn_out
        return out + x


class PalmHead(nn.Module):
    def __init__(self, vocab_size, word_embedding_weight):
        super().__init__()
        self.lm_head = LMLogits(vocab_size, bias=False)
        self.loss_func = ParallelCrossEntropyLoss()

        self.word_embedding_weight = word_embedding_weight

    def forward(self, x, lm_labels):
        logits = self.lm_head(x, self.word_embedding_weight)
        if lm_labels is not None:
            lm_loss = self.loss_func(logits, lm_labels)
            lm_loss = lm_loss.mean()
            return {"lm_loss": lm_loss}
        else:
            return {"prediction_scores": logits}


class PaLM(nn.Module):
    @configurable
    def __init__(
        self,
        vocab_size,
        dim,
        depth,
        dim_head=64,
        num_heads=8,
        ffn_mult=4,
        initializer_range=0.02,
        layernorm_eps=1e-12,
        amp_enabled=False,
    ):
        super().__init__()
        init_method = init_method_normal(initializer_range)

        word_embedding = VocabEmbedding(
            vocab_size,
            dim,
            init_method=init_method,
            amp_enabled=amp_enabled,
        )

        self.net = nn.Sequential(
            word_embedding,
            *[
                PalmTransformerLayer(
                    dim,
                    dim_head=dim_head,
                    num_heads=num_heads,
                    ffn_mult=ffn_mult,
                    layernorm_epsilon=layernorm_eps,
                    layer_idx=i,
                )
                for i in range(depth)
            ],
            LayerNorm(dim, bias=False, eps=layernorm_eps, layer_idx=-1),
        )

        self.head = PalmHead(vocab_size, word_embedding.weight)

    def forward(self, input_ids, labels=None):
        output = self.net(input_ids)
        return self.head(output, labels)

    @classmethod
    def from_config(cls, cfg):
        return {
            "vocab_size": cfg.vocab_size,
            "dim": cfg.dim,
            "depth": cfg.depth,
            "dim_head": cfg.dim_head,
            "num_heads": cfg.num_heads,
            "ffn_mult": cfg.ffn_mult,
            "initializer_range": cfg.initializer_range,
            "layernorm_eps": cfg.layernorm_eps,
            "amp_enabled": cfg.amp_enabled,
        }

    @staticmethod
    def set_activation_checkpoint(model):
        for module_block in model.modules():
            if hasattr(module_block, "origin"):
                if isinstance(module_block.origin, PalmTransformerLayer):
                    module_block.config.activation_checkpointing = True
            else:
                if isinstance(module_block.to(nn.Module), PalmTransformerLayer):
                    module_block.to(flow.nn.graph.GraphModule).activation_checkpointing = True

    @staticmethod
    def set_pipeline_stage_id(model: nn.Module):
        dist_utils = dist.get_dist_util()

        if hasattr(model.net[-1], "config"):
            # Old API in OneFlow 0.8
            for module_block in model.modules():
                if isinstance(module_block.origin, VocabEmbedding):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.origin, PalmTransformerLayer):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.origin, PalmHead):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )
            # final layernorm
            model.net[-1].config.set_stage(
                dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
            )
        else:
            for module_block in model.modules():
                if isinstance(module_block.to(nn.Module), VocabEmbedding):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.to(nn.Module), PalmTransformerLayer):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.to(nn.Module), PalmHead):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )
            # final layernorm
            model.net[-1].to(flow.nn.graph.GraphModule).set_stage(
                dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
            )