"vscode:/vscode.git/clone" did not exist on "7f2f8c40802fc2b64e508dfb8605ee22970beca1"
System.py 17.9 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from collections import defaultdict

import oneflow as flow
import oneflow.nn as nn

from libai.config.config import configurable
from projects.NeRF.modeling.NeRF import Embedding, NeRF


class NerfSystem(nn.Module):
    @configurable
    def __init__(
        self,
        D=8,
        W=256,
        in_channels_xyz=63,
        in_channels_dir=27,
        skips=[4],
        N_samples=64,
        use_disp=False,
        perturb=1.0,
        noise_std=1.0,
        N_importance=128,
        chunk=32 * 1204,
        dataset_type="Blender",
        loss_func=None,
    ):
        """
        Args:
            D (int): number of layers for density (sigma) encoder
            W (int): number of hidden units in each layer
            in_channels_xyz (int): number of input channels for xyz (3+3*10*2=63 by default)
            in_channels_dir (int): number of input channels for direction (3+3*4*2=27 by default)
            skips (list(int)): add skip connection in the Dth layer
            N_samples (int): number of coarse samples
            use_disp (bool): use disparity depth sampling
            perturb (float): factor to perturb depth sampling points
            noise_std (float): std dev of noise added to regularize sigma
            N_importance (int): number of additional fine samples
            chunk (int): chunk size to split the input to avoid OOM
            dataset_type (str): the dataset applied for training and evaluating
            loss_func (callable): type of loss function
        """
        super(NerfSystem, self).__init__()
        self.N_samples = N_samples
        self.use_disp = use_disp
        self.perturb = perturb
        self.noise_std = noise_std
        self.N_importance = N_importance
        self.chunk = chunk
        self.white_back = True if dataset_type == "Blender" else False
        self.loss_func = nn.MSELoss() if loss_func is None else loss_func
        self.embedding_xyz = Embedding(3, 10)  # 10 is the default number
        self.embedding_dir = Embedding(3, 4)  # 4 is the default number
        self.nerf_coarse = NeRF(
            D=D,
            W=W,
            input_ch=in_channels_xyz,
            input_ch_views=in_channels_dir,
            output_ch=5,
            skips=skips,
        )
        self.models = [self.nerf_coarse]
        if N_importance > 0:
            self.nerf_fine = NeRF(
                D=D,
                W=W,
                input_ch=in_channels_xyz,
                input_ch_views=in_channels_dir,
                output_ch=5,
                skips=skips,
            )
            self.models += [self.nerf_fine]

    @classmethod
    def from_config(cls, cfg):
        return {
            "D": cfg.D,
            "W": cfg.W,
            "in_channels_xyz": cfg.in_channels_xyz,
            "in_channels_dir": cfg.in_channels_dir,
            "skips": cfg.skips,
            "N_samples": cfg.N_samples,
            "use_disp": cfg.use_disp,
            "perturb": cfg.perturb,
            "noise_std": cfg.noise_std,
            "N_importance": cfg.N_importance,
            "chunk": cfg.chunk,
            "dataset_type": cfg.dataset_type,
            "loss_func": cfg.loss_func,
        }

    def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
        """
        Sample @N_importance samples from @bins with distribution defined by @weights.

        Inputs:
            bins (tensor): (N_rays, N_samples_+1) where N_samples_ is "the number of
                            coarse samples per ray - 2"
            weights (tensor): (N_rays, N_samples_)
            N_importance (int): the number of samples to draw from the distribution
            det (bool): deterministic or not
            eps (float): a small number to prevent division by zero

        Outputs:
            samples: the sampled samples
        """
        N_rays, N_samples_ = weights.shape
        weights = weights + eps  # prevent division by zero (don't do inplace op!)
        pdf = weights / flow.sum(weights, -1, keepdim=True)  # (N_rays, N_samples_)
        cdf = flow.cumsum(pdf, -1)  # (N_rays, N_samples), cumulative distribution function
        cdf = flow.cat([flow.zeros_like(cdf[:, :1]), cdf], -1)  # (N_rays, N_samples_+1)

        # padded to 0~1 inclusive
        if det:
            u = flow.linspace(0, 1, N_importance).to_global(placement=bins.placement, sbp=bins.sbp)
            u = u.expand(N_rays, N_importance)
        else:
            u = flow.rand(N_rays, N_importance).to_global(placement=bins.placement, sbp=bins.sbp)
        u = u.contiguous()

        inds = flow.searchsorted(cdf, u, right=True)
        below = flow.max(flow.zeros_like(inds - 1), inds - 1)
        above = flow.min((cdf.shape[-1] - 1) * flow.ones_like(inds), inds)
        inds_g = flow.stack([below, above], -1)  # (batch, N_samples, 2)

        # cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
        # bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
        matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
        cdf_g = flow.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
        bins_g = flow.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

        denom = cdf_g[..., 1] - cdf_g[..., 0]
        denom = flow.where(denom < 1e-5, flow.ones_like(denom), denom)
        t = (u - cdf_g[..., 0]) / denom
        samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
        return samples

    def inference(
        self,
        N_rays,
        model,
        embedding_xyz,
        xyz_,
        no_norm_dir_,
        dir_,
        dir_embedded,
        z_vals,
        noise_std=1,
        chunk=1024 * 32,
        white_back=False,
        weights_only=False,
    ):
        """
        Helper function that performs model inference.

        Inputs:
            N_rays (tensor): rays (N_rays, 3+3+2), ray origins, directions and near,
                             far depth bounds
            model (nn.Module): NeRF model (coarse or fine)
            embedding_xyz (nn.Module): embedding module for xyz
            xyz_ (tensor): (N_rays, N_samples_, 3) sampled positions
                  N_samples_ is the number of sampled points in each ray;
                             = N_samples for coarse model
                             = N_samples+N_importance for fine model
            no_norm_dir_ (tensor): (N_rays, 3) ray directions without norm
            dir_ (tensor): (N_rays, 3) ray directions with norm
            dir_embedded (tensor): (N_rays, embed_dir_channels) embedded directions
            z_vals (tensor): (N_rays, N_samples_) depths of the sampled positions
            weights_only (tensor): do inference on sigma only or not

        Outputs:
            if weights_only:
                weights (tensor): (N_rays, N_samples_) weights of each sample
            else:
                rgb_final (tensor): (N_rays, 3) the final rgb image
                depth_final (tensor): (N_rays) depth map
                weights (tensor): (N_rays, N_samples_): weights of each sample
        """
        N_samples_ = xyz_.shape[1]
        # Embed directions
        xyz_ = xyz_.view(-1, 3)  # (N_rays*N_samples_, 3)
        if not weights_only:
            dir_embedded = dir_embedded[:, None].expand(
                dir_embedded.shape[0], N_samples_, dir_embedded.shape[1]
            )
            dir_embedded = dir_embedded.reshape(-1, dir_embedded.shape[-1])

        # Perform model inference to get rgb and raw sigma
        B = xyz_.shape[0]
        out_chunks = []
        for i in range(0, B, chunk):
            # Embed positions by chunk
            xyz_embedded = embedding_xyz(xyz_[i : i + chunk])
            if not weights_only:
                xyzdir_embedded = flow.cat([xyz_embedded, dir_embedded[i : i + chunk]], 1)
            else:
                xyzdir_embedded = xyz_embedded
            out_chunk = model(xyzdir_embedded)
            out_chunks = out_chunks + [out_chunk]

        out = flow.cat(out_chunks, 0)
        if weights_only:
            sigmas = out.view(N_rays, N_samples_)
        else:
            rgbsigma = out.view(N_rays, N_samples_, 4)
            rgbs = rgbsigma[..., :3]  # (N_rays, N_samples_, 3)
            sigmas = rgbsigma[..., 3]  # (N_rays, N_samples_)

        # Convert these values using volume rendering (Section 4)
        deltas = z_vals[:, 1:].clone() - z_vals[:, :-1].clone()  # (N_rays, N_samples_-1)
        delta_inf = 1e10 * flow.ones_like(deltas[:, :1]).to_global(
            sbp=deltas.sbp, placement=deltas.placement
        )  # (N_rays, 1) the last delta is infinity
        deltas = flow.cat([deltas, delta_inf], -1)  # (N_rays, N_samples_)

        # Multiply each distance by the norm of its corresponding direction ray
        # to convert to real world distance (accounts for non-unit directions).
        deltas = deltas * flow.norm(no_norm_dir_.unsqueeze(1), dim=-1)

        noise = (
            flow.randn(sigmas.shape).to_global(placement=sigmas.placement, sbp=sigmas.sbp)
            * noise_std
        )

        # compute alpha by the formula (3)
        alphas = 1 - flow.exp(-deltas * flow.relu(sigmas + noise))  # (N_rays, N_samples_)
        ne_alphas = 1 - alphas + 1e-10
        alphas_shifted = flow.cat(
            [
                flow.ones_like(alphas[:, :1]).to_global(sbp=alphas.sbp, placement=alphas.placement),
                ne_alphas,
            ],
            -1,
        )  # [1, a1, a2, ...]
        weights = alphas * flow.cumprod(alphas_shifted, -1)[:, :-1]  # (N_rays, N_samples_)
        # weights = alphas * alphas_shifted[:, :-1]  # (N_rays, N_samples_)
        weights_sum = weights.sum(1)  # (N_rays), the accumulated opacity along the rays
        # equals "1 - (1-a1)(1-a2)...(1-an)" mathematically
        if weights_only:
            return weights

        # compute final weighted outputs
        rgb_final = flow.sum(weights.unsqueeze(-1) * rgbs, -2)  # (N_rays, 3)
        depth_final = flow.sum(weights * z_vals, -1)  # (N_rays)
        if white_back:

            rgb_final = rgb_final + (1 - weights_sum.unsqueeze(-1))

        return rgb_final, depth_final, weights

    def render_rays(
        self,
        models,
        embeddings,
        rays,
        N_samples=64,
        use_disp=False,
        perturb=0.0,
        N_importance=0.0,
        test_time=False,
        noise_std=1.0,
        chunk=1024 * 32,
        white_back=False,
    ):

        # Extract models from lists
        model_coarse = models[0]
        embedding_xyz = embeddings[0]
        embedding_dir = embeddings[1]

        # Decompose the inputs
        N_rays = rays.shape[0]
        rays_o, rays_d = rays[:, 0:3], rays[:, 3:6]  # both (N_rays, 3)
        near, far = rays[:, 6:7], rays[:, 7:8]  # both (N_rays, 1)
        viewdirs = rays_d / flow.norm(rays_d, dim=-1, keepdim=True)

        # Embed direction
        dir_embedded = embedding_dir(viewdirs)  # (N_rays, embed_dir_channels)

        # Sample depth points
        z_steps = flow.linspace(0, 1, N_samples).to_global(
            sbp=rays.sbp, placement=rays.placement
        )  # (N_samples)
        if not use_disp:  # use linear sampling in depth space
            z_vals = near * (1 - z_steps) + far * z_steps
        else:  # use linear sampling in disparity space
            z_vals = 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps)

        z_vals = z_vals.expand(N_rays, N_samples)

        if perturb > 0:  # perturb sampling depths (z_vals)
            z_vals_mid = 0.5 * (
                z_vals[:, :-1] + z_vals[:, 1:]
            )  # (N_rays, N_samples-1) interval mid points
            # get intervals between samples
            upper = flow.cat([z_vals_mid, z_vals[:, -1:]], -1)
            lower = flow.cat([z_vals[:, :1], z_vals_mid], -1)

            v = flow.rand(z_vals.shape).to_global(sbp=rays.sbp, placement=rays.placement)
            perturb_rand = perturb * v
            z_vals = lower + (upper - lower) * perturb_rand

        xyz_coarse_sampled = rays_o.unsqueeze(1) + rays_d.unsqueeze(1) * z_vals.unsqueeze(
            2
        )  # (N_rays, N_samples, 3)
        if test_time:
            weights_coarse = self.inference(
                rays.shape[0],
                model_coarse,
                embedding_xyz,
                xyz_coarse_sampled,
                rays_d,
                viewdirs,
                dir_embedded,
                z_vals,
                noise_std,
                chunk,
                white_back,
                weights_only=True,
            )
            result = {"opacity_coarse": weights_coarse.sum(1)}
        else:
            rgb_coarse, depth_coarse, weights_coarse = self.inference(
                rays.shape[0],
                model_coarse,
                embedding_xyz,
                xyz_coarse_sampled,
                rays_d,
                viewdirs,
                dir_embedded,
                z_vals,
                noise_std,
                chunk,
                white_back,
                weights_only=False,
            )
            result = {
                "rgb_coarse": rgb_coarse,
                "depth_coarse": depth_coarse,
                "opacity_coarse": weights_coarse.sum(1),
            }

        if N_importance > 0:  # sample points for fine model
            z_vals_mid = 0.5 * (
                z_vals[:, :-1] + z_vals[:, 1:]
            )  # (N_rays, N_samples-1) interval mid points
            z_vals_ = self.sample_pdf(
                z_vals_mid, weights_coarse[:, 1:-1], N_importance, det=(perturb == 0)
            ).detach()
            # detach so that grad doesn't propogate to weights_coarse from here

            z_vals, _ = flow.sort(flow.cat([z_vals, z_vals_], -1), -1)

            xyz_fine_sampled = rays_o.unsqueeze(1) + rays_d.unsqueeze(1) * z_vals.unsqueeze(2)
            # (N_rays, N_samples+N_importance, 3)

            model_fine = models[1]
            rgb_fine, depth_fine, weights_fine = self.inference(
                rays.shape[0],
                model_fine,
                embedding_xyz,
                xyz_fine_sampled,
                rays_d,
                viewdirs,
                dir_embedded,
                z_vals,
                noise_std,
                chunk,
                white_back,
                weights_only=False,
            )
            result["rgb_fine"] = rgb_fine
            result["depth_fine"] = depth_fine
            result["opacity_fine"] = weights_fine.sum(1)

        return result

    def forward_features(self, rays):
        """Do batched inference on rays using chunk."""
        B = rays.shape[0]
        results = defaultdict(list)
        for i in range(0, B, self.chunk):
            rendered_ray_chunks = self.render_rays(
                self.models,
                [self.embedding_xyz, self.embedding_dir],
                rays[i : i + self.chunk],
                self.N_samples,
                self.use_disp,
                self.perturb,
                self.N_importance,
                False,
                self.noise_std,
                self.chunk,  # chunk size is effective in val mode
                self.white_back,
            )

            for k, v in rendered_ray_chunks.items():
                results[k] += [v]
        for k, v in results.items():
            results[k] = flow.cat(v, 0)
        return results

    def forward(self, rays, rgbs=None, c2w=None, valid_mask=None):
        """
        Inputs:
            rays (tensor): (batchsize, 3+3+2) the set of input rays samples
            rgbs (tensor): (batchsize, 3) the set of input rgbs samples
            c2w (tensor): (3, 4) transformation matrix from camera coordinate to world coordinate
            valid_mask (tensor): (H W) valid color area

        Outputs:
            re (dict): regarding the series of outputs such as rgbs and loss obtained from the
                        model predictions.
        """
        if c2w is None:
            rays = rays.squeeze()  # (H*W, 3)
            rgbs = rgbs.squeeze()  # (H*W, 3)
            results = self.forward_features(rays)
            losses = self.loss_func(results["rgb_coarse"], rgbs)
            if "rgb_fine" in results:
                losses += self.loss_func(results["rgb_fine"], rgbs)
            return {"losses": losses}
        else:
            if rgbs is None:
                rays = rays.squeeze()  # (H*W, 3)
                results = self.forward_features(rays)
                typ = "fine" if "rgb_fine" in results else "coarse"
                re = collections.OrderedDict()
                re[typ] = flow.Tensor([0.0]).to_global(sbp=rays.sbp, placement=rays.placement)
                for key, value in results.items():
                    re[key] = value.unsqueeze(0)
                return re
            else:
                rays = rays.squeeze()  # (H*W, 3)
                rgbs = rgbs.squeeze()  # (H*W, 3)
                results = self.forward_features(rays)
                losses = self.loss_func(results["rgb_coarse"], rgbs)
                if "rgb_fine" in results:
                    losses += self.loss_func(results["rgb_fine"], rgbs)
                typ = "fine" if "rgb_fine" in results else "coarse"
                re = collections.OrderedDict()
                re["losses"] = losses
                re[typ] = flow.Tensor([0.0]).to_global(sbp=losses.sbp, placement=losses.placement)
                for key, value in results.items():
                    re[key] = value.unsqueeze(0)
                re["rgbs"] = rgbs.unsqueeze(0)
            return re