config_nerf.py 5.53 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from omegaconf import OmegaConf

import oneflow as flow
import oneflow.nn as nn

from libai.data.build import build_image_train_loader, build_image_test_loader
from libai.config import LazyCall, get_config
from libai.optim import get_default_optimizer_params
from libai.scheduler.lr_scheduler import WarmupCosineAnnealingLR, WarmupMultiStepLR

from projects.NeRF.datasets import BlenderDataset, LLFFDataset
from projects.NeRF.optimizers import Ranger, RAdam
from projects.NeRF.evaluation.nerf_evaluator import NerfEvaluator
from projects.NeRF.configs.config_model import model


def get_nerf_dataset(dataset_type="Blender"):
    """
    Args:
        dataset_type: Blender or LLFF
    """
    assert dataset_type in ["Blender", "LLFF"], "The Nerf dataset must be one of Blender and LLFF"
    if dataset_type == "Blender":
        return BlenderDataset
    else:
        return LLFFDataset


graph = get_config("common/models/graph.py").graph
graph.enabled = False
train = get_config("common/train.py").train

# Refine train cfg for Nerf System
train.train_micro_batch_size = 1024  # Verification by ray
train.test_micro_batch_size = 1  # Verification by picture
train.dataset_type = "Blender"  # Blender or LLFF
train.blender_dataset_path = "/path/to/blender"
train.llff_dataset_path = "/path/to/llff"
train.train_epoch = 16 if train.dataset_type == "Blender" else 30
train.warmup_ratio = int(1 / train.train_epoch)
train.evaluation.eval_period = 1000
train.log_period = 50
train.optim_type = "adam"
train.lr_scheduler_type = "cosine"

# Redefining model config
model.cfg.dataset_type = train.dataset_type
model.cfg.loss_func = nn.MSELoss()
model.cfg.noise_std = 0.0 if train.dataset_type == "Blender" else 1.0
# Redefining evaluator
train.evaluation = dict(
    enabled=True,
    # evaluator for calculating psnr
    evaluator=LazyCall(NerfEvaluator)(
        img_wh=(400, 400) if train.dataset_type == "Blender" else (504, 378)
    ),
    eval_period=train.evaluation.eval_period,
    eval_iter=1e5,  # running steps for validation/test
    # Metrics to be used for best model checkpoint.
    eval_metric="psnr",
    eval_mode="max",
)

# Refine optimizer cfg for Nerf System
# NOTE: In theory, both datasets used by Nerf are optimized using the Adam optimizer, but
# since the borrowed code base also implements three other optimizer configurations, libai
# also implements the corresponding optimizer.
if train.optim_type == "adam":
    optimizer = flow.optim.Adam
    lr = 5e-4
elif train.optim_type == "sgd":
    optimizer = flow.optim.SGD
    lr = 5e-2
elif train.optim_type == "radam":
    optimizer = RAdam
    lr = 5e-4
elif train.optim_type == "ranger":
    optimizer = Ranger
    lr = 5e-4
else:
    raise NotImplementedError("Nerf does not support this type of optimizer!")

optim = LazyCall(optimizer)(
    params=LazyCall(get_default_optimizer_params)(
        # params.model is meant to be set to the model object,
        # before instantiating the optimizer.
        clip_grad_max_norm=None,
        clip_grad_norm_type=None,
        weight_decay_norm=None,
        weight_decay_bias=None,
    ),
    lr=lr,
    weight_decay=0,
)

if train.optim_type == "sgd":
    optim.momentum = 0.9

if train.lr_scheduler_type == "steplr":
    scheduler = WarmupMultiStepLR
elif train.lr_scheduler_type == "cosine":
    scheduler = WarmupCosineAnnealingLR
else:
    raise NotImplementedError("Nerf does not support this type of scheduler!")

train.scheduler = LazyCall(scheduler)(
    warmup_factor=0.001,
    warmup_method="linear",
)

if train.lr_scheduler_type == "steplr":
    if train.dataset_type == "Blender":
        milestones = [2 / 16, 4 / 16, 8 / 16]
    else:
        milestones = [10 / 30, 20 / 30]
    train.scheduler.milestones = milestones
    train.scheduler.gamma = 0.5
elif train.lr_scheduler_type == "cosine":
    train.scheduler.eta_min = 1e-8

train.warmup_ratio = (
    train.warmup_ratio
    if train.warmup_ratio > 0 and train.optim_type not in ["radam", "ranger"]
    else 0.0
)

# Set fp16 ON
train.amp.enabled = True

dataset = LazyCall(get_nerf_dataset)(dataset_type=train.dataset_type)

dataloader = OmegaConf.create()

dataloader.train = LazyCall(build_image_train_loader)(
    dataset=[
        LazyCall(dataset)(
            split="train",
            img_wh=(400, 400) if dataset.dataset_type == "Blender" else (504, 378),
            root_dir=train.blender_dataset_path
            if dataset.dataset_type == "Blender"
            else train.llff_dataset_path,
            spheric_poses=None if dataset.dataset_type == "Blender" else False,
            val_num=None if dataset.dataset_type == "Blender" else 1,  # Number of your GPUs
            batchsize=train.train_micro_batch_size,
        )
    ],
    num_workers=4,
    train_batch_size=1,
    test_batch_size=train.test_micro_batch_size,
)

dataloader.test = [
    LazyCall(build_image_test_loader)(
        dataset=LazyCall(dataset)(
            split="val",
            img_wh=(400, 400) if dataset.dataset_type == "Blender" else (504, 378),
            root_dir=train.blender_dataset_path
            if dataset.dataset_type == "Blender"
            else train.llff_dataset_path,
            spheric_poses=None if dataset.dataset_type == "Blender" else False,
            val_num=None if dataset.dataset_type == "Blender" else 1,  # Number of your GPUs
        ),
        num_workers=0,
        test_batch_size=train.test_micro_batch_size,
    )
]

# Distributed Settings
depth = None
train.train_micro_batch_size = 1
train.dist.pipeline_num_layers = depth
train.dist.data_parallel_size = 1
train.dist.tensor_parallel_size = 1
train.dist.pipeline_parallel_size = 1