mt5_loader.py 14.5 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json

import oneflow as flow

from libai.models.utils import ModelLoaderHuggerFace, ModelLoaderLiBai


class T5LoaderHuggerFace(ModelLoaderHuggerFace):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)

        """NOTE: base_model_prefix_1 is T5's prefix in Transformers.
        base_model_prefix_2 is T5's prefix in LiBai."""
        self.base_model_prefix_1 = "transformer"
        self.base_model_prefix_2 = "mt5_model"

    def _convert_state_dict(self, flow_state_dict, cfg):
        """Convert state_dict's keys to match model.

        Args:
            flow_state_dict (OrderedDict): model state dict.
            cfg (dict): model's default config dict in LiBai.

        Returns:
            OrderedDict: flow state dict.
        """
        # The converted checkpoint.
        oneflow_state_dict = flow_state_dict.copy()
        old_keys = list(oneflow_state_dict.keys())
        # Get configs
        num_heads = cfg.get("num_attention_heads")
        hidden_size = cfg.get("hidden_size")
        head_size = cfg.get("head_size", None)
        if head_size is None:
            head_size = int(hidden_size / num_heads)

        has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict)
        prefix1 = self.base_model_prefix_1 + "." if has_prefix else ""
        prefix2 = self.base_model_prefix_2 + "." if has_prefix else ""
        encoder_decoder_idx = 1 if has_prefix else 0
        layer_idx1 = 3 if has_prefix else 2
        layer_idx2 = 5 if has_prefix else 4
        op_idx = 6 if has_prefix else 5

        # Convert T5's Embedding layers.
        # NOTE: Transformers' T5 has no position embedding layer.
        new_key = prefix2 + "embedding.word_embeddings.weight"
        old_keys.remove(prefix1 + "shared.weight")
        oneflow_state_dict[new_key] = oneflow_state_dict.pop(prefix1 + "shared.weight")

        # Convert T5's final_layer_norm
        new_key = prefix2 + "encoder.final_layernorm.weight"
        old_keys.remove(prefix1 + "encoder.final_layer_norm.weight")
        oneflow_state_dict[new_key] = oneflow_state_dict.pop(
            prefix1 + "encoder.final_layer_norm.weight"
        )
        new_key = prefix2 + "decoder.final_layernorm.weight"
        old_keys.remove(prefix1 + "decoder.final_layer_norm.weight")
        oneflow_state_dict[new_key] = oneflow_state_dict.pop(
            prefix1 + "decoder.final_layer_norm.weight"
        )

        # Convert MT5's lm_head
        if cfg.model_type == "mt5" and "lm_head.weight" in oneflow_state_dict:
            new_key = prefix2 + "lm_head.weight"
            old_keys.remove("lm_head.weight")
            oneflow_state_dict[new_key] = oneflow_state_dict.pop("lm_head.weight")

        # NOTE: Each layers has no bias in Transformer's T5.
        for key in old_keys:
            keys = key.split(".")
            if layer_idx1 > len(keys) or layer_idx2 > len(keys):
                continue
            layer1 = keys[layer_idx1]
            layer2 = keys[layer_idx2]
            op_name = keys[op_idx]

            if keys[op_idx + 1] == "relative_attention_bias" and keys[op_idx] == "SelfAttention":
                new_key = (
                    prefix2
                    + keys[encoder_decoder_idx]
                    + ".layers.0.self_attention.relative_attention_bias.weight"
                )
                oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            # Convert T5's Encoder layers.
            if keys[encoder_decoder_idx] == "encoder":
                if op_name == "SelfAttention":
                    new_key = (
                        prefix2
                        + "encoder.layers."
                        + layer1
                        + ".self_attention.query_key_value.weight"
                    )
                    if new_key in oneflow_state_dict.keys():
                        continue
                    q_w = ".".join(keys[: op_idx + 1]) + ".q." + "weight"
                    k_w = ".".join(keys[: op_idx + 1]) + ".k." + "weight"
                    v_w = ".".join(keys[: op_idx + 1]) + ".v." + "weight"
                    qkv_w = flow.cat(
                        (
                            oneflow_state_dict.pop(q_w),
                            oneflow_state_dict.pop(k_w),
                            oneflow_state_dict.pop(v_w),
                        ),
                        dim=0,
                    )
                    qkv_w = self._fix_qkv_ordering(qkv_w, head_size, num_heads, hidden_size)
                    oneflow_state_dict[new_key] = qkv_w

                    o_w = ".".join(keys[: op_idx + 1]) + ".o." + "weight"
                    new_key = prefix2 + "encoder.layers." + layer1 + ".self_attention.dense.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(o_w)
                elif op_name == "layer_norm":
                    if layer2 == "0":
                        new_key = prefix2 + "encoder.layers." + layer1 + ".input_layernorm.weight"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif layer2 == "1":
                        new_key = (
                            prefix2
                            + "encoder.layers."
                            + layer1
                            + ".post_attention_layernorm.weight"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif op_name == "DenseReluDense":
                    if cfg.get("model_type") == "t5":
                        if keys[op_idx + 1] == "wi":
                            new_key = (
                                prefix2 + "encoder.layers." + layer1 + ".mlp.dense_h_to_4h.weight"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wo":
                            new_key = (
                                prefix2 + "encoder.layers." + layer1 + ".mlp.dense_4h_to_h.weight"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif cfg.get("model_type") == "mt5":
                        if keys[op_idx + 1] == "wi_0":
                            new_key = prefix2 + "encoder.layers." + layer1 + ".mlp.wi_0.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wi_1":
                            new_key = prefix2 + "encoder.layers." + layer1 + ".mlp.wi_1.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wo":
                            new_key = prefix2 + "encoder.layers." + layer1 + ".mlp.wo.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)

            # Convert T5's decoder Layers.
            elif keys[encoder_decoder_idx] == "decoder":
                if op_name == "SelfAttention":
                    new_key = (
                        prefix2
                        + "decoder.layers."
                        + layer1
                        + ".self_attention.query_key_value.weight"
                    )
                    if new_key in oneflow_state_dict.keys():
                        continue
                    q_w = ".".join(keys[: op_idx + 1]) + ".q." + "weight"
                    k_w = ".".join(keys[: op_idx + 1]) + ".k." + "weight"
                    v_w = ".".join(keys[: op_idx + 1]) + ".v." + "weight"
                    qkv_w = flow.cat(
                        (
                            oneflow_state_dict.pop(q_w),
                            oneflow_state_dict.pop(k_w),
                            oneflow_state_dict.pop(v_w),
                        ),
                        dim=0,
                    )
                    qkv_w = self._fix_qkv_ordering(qkv_w, head_size, num_heads, hidden_size)

                    oneflow_state_dict[new_key] = qkv_w

                    o_w = ".".join(keys[: op_idx + 1]) + ".o." + "weight"
                    new_key = prefix2 + "decoder.layers." + layer1 + ".self_attention.dense.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(o_w)
                elif op_name == "layer_norm":
                    if layer2 == "0":
                        new_key = prefix2 + "decoder.layers." + layer1 + ".input_layernorm.weight"
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif layer2 == "1":
                        new_key = (
                            prefix2
                            + "decoder.layers."
                            + layer1
                            + ".post_attention_layernorm.weight"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif layer2 == "2":
                        new_key = (
                            prefix2
                            + "decoder.layers."
                            + layer1
                            + ".post_cross_attention_layernorm.weight"
                        )
                        oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                elif op_name == "EncDecAttention":
                    new_key = prefix2 + "decoder.layers." + layer1 + ".cross_attention.query.weight"
                    if new_key in oneflow_state_dict.keys():
                        continue
                    q_w = ".".join(keys[: op_idx + 1]) + ".q." + "weight"
                    k_w = ".".join(keys[: op_idx + 1]) + ".k." + "weight"
                    v_w = ".".join(keys[: op_idx + 1]) + ".v." + "weight"

                    q_w = oneflow_state_dict.pop(q_w)
                    kv_w = flow.cat(
                        (
                            oneflow_state_dict.pop(k_w),
                            oneflow_state_dict.pop(v_w),
                        ),
                        dim=0,
                    )
                    q_w = self._fix_qkv_ordering(q_w, head_size, num_heads, hidden_size)
                    kv_w = self._fix_qkv_ordering(kv_w, head_size, num_heads, hidden_size)

                    oneflow_state_dict[new_key] = q_w
                    new_key = (
                        prefix2 + "decoder.layers." + layer1 + ".cross_attention.key_value.weight"
                    )
                    oneflow_state_dict[new_key] = kv_w

                    o_w = ".".join(keys[: op_idx + 1]) + ".o." + "weight"
                    new_key = prefix2 + "decoder.layers." + layer1 + ".cross_attention.dense.weight"
                    oneflow_state_dict[new_key] = oneflow_state_dict.pop(o_w)
                elif op_name == "DenseReluDense":
                    if cfg.get("model_type") == "t5":
                        if keys[op_idx + 1] == "wi":
                            new_key = (
                                prefix2 + "decoder.layers." + layer1 + ".mlp.dense_h_to_4h.weight"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wo":
                            new_key = (
                                prefix2 + "decoder.layers." + layer1 + ".mlp.dense_4h_to_h.weight"
                            )
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                    elif cfg.get("model_type") == "mt5":
                        if keys[op_idx + 1] == "wi_0":
                            new_key = prefix2 + "decoder.layers." + layer1 + ".mlp.wi_0.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wi_1":
                            new_key = prefix2 + "decoder.layers." + layer1 + ".mlp.wi_1.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
                        elif keys[op_idx + 1] == "wo":
                            new_key = prefix2 + "decoder.layers." + layer1 + ".mlp.wo.weight"
                            oneflow_state_dict[new_key] = oneflow_state_dict.pop(key)
        return oneflow_state_dict

    def _load_config_from_json(self, config_file):
        """load config from `config.json`, and update default config.

        Args:
            config_file (str): Path of config file.
        """
        with open(config_file, mode="r", encoding="utf-8") as f:
            cfg_dict = json.load(f)

        self._update_cfg("vocab_size", cfg_dict["vocab_size"])
        self._update_cfg("hidden_size", cfg_dict["d_model"])
        self._update_cfg("hidden_layers", cfg_dict["num_layers"])
        self._update_cfg("num_attention_heads", cfg_dict["num_heads"])
        self._update_cfg("intermediate_size", cfg_dict["d_ff"])
        self._update_cfg("hidden_dropout_prob", cfg_dict["dropout_rate"])
        self._update_cfg("attention_probs_dropout_prob", cfg_dict["dropout_rate"])
        self._update_cfg(
            "relative_attention_num_buckets", cfg_dict["relative_attention_num_buckets"]
        )
        self._update_cfg("embedding_dropout_prob", cfg_dict["dropout_rate"])
        self._update_cfg("initializer_range", cfg_dict["initializer_factor"])
        self._update_cfg("layernorm_eps", cfg_dict["layer_norm_epsilon"])
        self._update_cfg("head_size", cfg_dict["d_kv"])
        if "tie_word_embeddings" in self.libai_cfg:
            self._update_cfg("tie_word_embeddings", cfg_dict.get("tie_word_embeddings", True))

        # update libai_cfg by kwargs
        for k, v in self.kwargs.items():
            self._update_cfg(k, v)

        self._update_cfg_log()


class T5LoaderLibai(ModelLoaderLiBai):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)
        self.base_model_prefix_2 = "mt5_model"