mt5_model.py 17.9 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import oneflow as flow
import oneflow.nn as nn

from libai.config import configurable
from libai.inference.generator.generation_utils import Generator
from libai.layers import Linear, LMLogits, RMSLayerNorm
from libai.models.utils import init_method_normal, scaled_init_method_normal
from libai.utils import distributed as dist
from projects.MT5.layers.embed_layer import MT5Embedding
from projects.MT5.layers.loss_layer import MT5Loss
from projects.MT5.layers.mask_layer import ExtendedMask
from projects.MT5.layers.transformer_layer import TransformerLayer
from projects.MT5.utils.mt5_loader import T5LoaderHuggerFace


class MT5Model(flow.nn.Module, Generator):
    @configurable
    def __init__(
        self,
        vocab_size,
        hidden_size,
        hidden_layers,
        num_attention_heads,
        head_size,
        intermediate_size,
        embedding_dropout_prob,
        hidden_dropout_prob,
        attention_probs_dropout_prob,
        relative_attention_num_buckets,
        padding_idx=None,
        initializer_range=0.02,
        layernorm_eps=1e-12,
        amp_enabled=False,
        model_type="mt5",
        cfg=None,
    ) -> None:
        super().__init__()
        self.cfg = cfg
        self.model_type = model_type
        init_method = init_method_normal(initializer_range)
        scaled_init_method = scaled_init_method_normal(initializer_range, hidden_layers)
        self.embedding = MT5Embedding(
            hidden_size=hidden_size,
            vocab_size=vocab_size,
            embedding_dropout_prob=embedding_dropout_prob,
            init_method=init_method,
            amp_enabled=amp_enabled,
        )
        self.extended_attn_mask = ExtendedMask()

        encoder_layers = flow.nn.ModuleList(
            [
                TransformerLayer(
                    hidden_size=hidden_size,
                    ffn_hidden_size=intermediate_size,
                    num_attention_heads=num_attention_heads,
                    head_size=head_size,
                    relative_attention_num_buckets=relative_attention_num_buckets,
                    is_decoder=False,
                    attention_dropout_prob=attention_probs_dropout_prob,
                    output_dropout_prob=hidden_dropout_prob,
                    layernorm_epsilon=layernorm_eps,
                    init_method=init_method,
                    output_layer_init_method=scaled_init_method,
                    padding_idx=padding_idx,
                    layer_idx=i,
                    model_type=model_type,
                    has_relative_attention_bias=bool(i == 0),
                )
                for i in range(hidden_layers)
            ]
        )

        encoder_final_layernorm = RMSLayerNorm(
            (hidden_size,),
            eps=layernorm_eps,
            layer_idx=hidden_layers - 1,
        )

        self.encoder = flow.nn.Sequential()
        self.encoder.add_module("layers", encoder_layers)
        self.encoder.add_module("final_layernorm", encoder_final_layernorm)

        decoder_layers = flow.nn.ModuleList(
            [
                TransformerLayer(
                    hidden_size=hidden_size,
                    ffn_hidden_size=intermediate_size,
                    num_attention_heads=num_attention_heads,
                    head_size=head_size,
                    relative_attention_num_buckets=relative_attention_num_buckets,
                    is_decoder=True,
                    attention_dropout_prob=attention_probs_dropout_prob,
                    output_dropout_prob=hidden_dropout_prob,
                    layernorm_epsilon=layernorm_eps,
                    init_method=init_method,
                    output_layer_init_method=scaled_init_method,
                    padding_idx=padding_idx,
                    layer_idx=i,
                    model_type=model_type,
                    has_relative_attention_bias=bool(i - hidden_layers == 0),
                )
                for i in range(hidden_layers, 2 * hidden_layers)
            ]
        )

        decoder_final_layernorm = RMSLayerNorm(
            (hidden_size,),
            eps=layernorm_eps,
            layer_idx=2 * hidden_layers - 1,
        )

        self.decoder = flow.nn.Sequential()
        self.decoder.add_module("layers", decoder_layers)
        self.decoder.add_module("final_layernorm", decoder_final_layernorm)
        self.past_key_values = [None] * len(self.decoder.layers)
        self.encoder_states = None
        self.past_length = 0

        if model_type == "mt5":
            self.lm_head = Linear(
                hidden_size, vocab_size, bias=False, layer_idx=2 * hidden_layers - 1
            )
        else:
            self.lm_head = LMLogits(vocab_size, bias=False)

    @classmethod
    def from_config(cls, cfg):
        return {
            "vocab_size": cfg.vocab_size,
            "hidden_size": cfg.hidden_size,
            "hidden_layers": cfg.hidden_layers,
            "num_attention_heads": cfg.num_attention_heads,
            "head_size": cfg.head_size,
            "intermediate_size": cfg.intermediate_size,
            "embedding_dropout_prob": cfg.embedding_dropout_prob,
            "hidden_dropout_prob": cfg.hidden_dropout_prob,
            "attention_probs_dropout_prob": cfg.attention_probs_dropout_prob,
            "relative_attention_num_buckets": cfg.relative_attention_num_buckets,
            "padding_idx": cfg.padding_idx,
            "initializer_range": cfg.initializer_range,
            "layernorm_eps": cfg.layernorm_eps,
            "amp_enabled": cfg.amp_enabled,
            "model_type": cfg.model_type,
            "cfg": cfg,
        }

    def forward(
        self,
        encoder_input_ids=None,
        decoder_input_ids=None,
        encoder_attn_mask=None,
        decoder_attn_mask=None,
        encoder_decoder_attn_mask=None,
        use_cache=False,
        only_encoder=False,
    ):

        encoder_input_ids = (
            encoder_input_ids.to_global(placement=dist.get_layer_placement(0))
            if encoder_input_ids is not None
            else encoder_input_ids
        )
        decoder_input_ids = (
            decoder_input_ids.to_global(placement=dist.get_layer_placement(0))
            if decoder_input_ids is not None
            else decoder_input_ids
        )
        encoder_attn_mask = (
            encoder_attn_mask.to_global(placement=dist.get_layer_placement(0))
            if encoder_attn_mask is not None
            else encoder_attn_mask
        )
        decoder_attn_mask = (
            decoder_attn_mask.to_global(placement=dist.get_layer_placement(0))
            if decoder_attn_mask is not None
            else decoder_attn_mask
        )
        encoder_decoder_attn_mask = (
            encoder_decoder_attn_mask.to_global(placement=dist.get_layer_placement(0))
            if encoder_decoder_attn_mask is not None
            else encoder_decoder_attn_mask
        )

        if use_cache and self.encoder_states is not None:
            encoder_states = self.encoder_states
        else:
            position_bias = None
            encoder_decoder_position_bias = None
            self.set_cache(encoder_states=None, past_key_values=None)
            encoder_attn_mask = self.extended_attn_mask(encoder_attn_mask)
            enc_embedding_output = self.embedding(encoder_input_ids)
            # transpose [batch_size, seq_len, embed_size] to [seq_len, batch_size, embed_size]
            enc_hidden_states = enc_embedding_output.transpose(0, 1)

            for layer in self.encoder.layers:
                enc_hidden_states, position_bias = layer(
                    enc_hidden_states,
                    encoder_attn_mask,
                    position_bias=position_bias,
                )
            encoder_states = self.encoder.final_layernorm(enc_hidden_states)

        if only_encoder:
            return encoder_states

        decoder_attn_mask = self.extended_attn_mask(
            decoder_attn_mask, decoder_input_ids, is_decoder=True
        )
        encoder_decoder_attn_mask = self.extended_attn_mask(encoder_decoder_attn_mask)

        dec_embedding_output = self.embedding(decoder_input_ids)
        # transpose [batch_size, seq_len, embed_size] to [seq_len, batch_size, embed_size]
        dec_hidden_states = dec_embedding_output.transpose(0, 1)
        if use_cache:
            presents = []

        position_bias = None
        encoder_decoder_position_bias = None
        for layer, past_key_value in zip(self.decoder.layers, self.past_key_values):
            dec_hidden_states, position_bias, encoder_decoder_position_bias = layer(
                dec_hidden_states,
                decoder_attn_mask,
                encoder_states,
                encoder_decoder_attn_mask,
                past_key_value=past_key_value,
                position_bias=position_bias,
                encoder_decoder_position_bias=encoder_decoder_position_bias,
                use_cache=use_cache,
            )
            if use_cache:
                dec_hidden_states, present = dec_hidden_states
                presents.append(present)
        if use_cache:
            self.set_cache(encoder_states, past_key_values=presents)

        decoder_states = self.decoder.final_layernorm(dec_hidden_states)

        if self.cfg.tie_word_embeddings:
            decoder_states = decoder_states * (self.cfg.hidden_size ** -0.5)

        if self.model_type == "mt5":
            logits = self.lm_head(decoder_states)
        else:
            logits = self.lm_head(decoder_states, self.embedding.word_embeddings.weight)

        return {"logits": logits}

    def set_cache(self, encoder_states, past_key_values):
        self.encoder_states = encoder_states
        self.past_length = 0 if past_key_values is None else past_key_values[0][0].shape[2]

        if past_key_values is None:
            past_key_values = [None] * len(self.decoder.layers)
        assert len(past_key_values) == len(self.decoder.layers), (
            f"past_key_values's length {len(past_key_values)} doesn't match "
            f"decoder num_layers' length {self.decoder.layers}"
        )
        self.past_key_values = past_key_values

    def _reorder_cache(self, beam_idx):
        past_key_values = self.past_key_values
        reordered_decoder_past = ()
        for layer_past_states in past_key_values:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                beam_idx = beam_idx.to_global(placement=layer_past_state.placement)
                reordered_layer_past_states = reordered_layer_past_states + (
                    layer_past_state.index_select(0, beam_idx),
                )

            assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
            assert len(reordered_layer_past_states) == len(layer_past_states)

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past=None,
        encoder_attn_mask=None,
        encoder_decoder_attn_mask=None,
        use_cache=None,
        encoder_outputs=None,
    ):
        # cut decoder_input_ids if past is used
        if past is not None:
            input_ids = input_ids[:, -1:]
            self.past_key_values = past

        self.encoder_states = encoder_outputs
        decoder_attn_maks = flow.ones(
            input_ids.size(),
            dtype=flow.bool,
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            placement=flow.placement("cuda", list(range(dist.get_world_size()))),
        )
        return {
            "decoder_input_ids": input_ids,
            "decoder_attn_mask": decoder_attn_maks,
            "encoder_attn_mask": encoder_attn_mask,
            "encoder_decoder_attn_mask": encoder_decoder_attn_mask,
            "use_cache": use_cache,
        }


class MT5ForPreTraining(flow.nn.Module):
    def __init__(self, cfg) -> None:
        super().__init__()
        if cfg.pretrained_model_path is not None:
            loader = T5LoaderHuggerFace(MT5Model, cfg, cfg.pretrained_model_path)
            self.mt5_model = loader.load()
        else:
            self.mt5_model = MT5Model(cfg)
        self.loss_func = MT5Loss()

    def set_cache(self, encoder_states, past_key_values):
        self.mt5_model.set_cache(encoder_states, past_key_values)

    def forward(
        self,
        encoder_input_ids,
        decoder_input_ids,
        encoder_attn_mask,
        decoder_attn_mask,
        encoder_decoder_attn_mask,
        lm_labels=None,
        loss_mask=None,
        use_cache=False,
    ):
        logits = self.mt5_model(
            encoder_input_ids,
            decoder_input_ids,
            encoder_attn_mask,
            decoder_attn_mask,
            encoder_decoder_attn_mask,
            use_cache=use_cache,
        )["logits"]
        # transpose [seq_len, batch_size, vocab_size] to [batch_size, seq_len, vocab_size]
        logits = logits.transpose(0, 1)
        if lm_labels is not None:
            lm_loss = self.loss_func(logits, lm_labels, loss_mask)
            return lm_loss
        else:
            return {
                "prediction_scores": logits,
            }

    @staticmethod
    def set_pipeline_stage_id(model):
        dist_utils = dist.get_dist_util()

        # Set pipeline parallelism stage_id
        if hasattr(model.mt5_model.encoder.final_layernorm, "config"):
            # Old API in OneFlow 0.8
            for module_block in model.modules():
                if isinstance(module_block.origin, MT5Embedding):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.origin, ExtendedMask):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.origin, TransformerLayer):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.origin, MT5Loss):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )

            model.mt5_model.encoder.final_layernorm.config.set_stage(
                dist_utils.get_layer_stage_id(model.mt5_model.encoder.final_layernorm.layer_idx),
                dist.get_layer_placement(model.mt5_model.encoder.final_layernorm.layer_idx),
            )
            model.mt5_model.decoder.final_layernorm.config.set_stage(
                dist_utils.get_layer_stage_id(model.mt5_model.decoder.final_layernorm.layer_idx),
                dist.get_layer_placement(model.mt5_model.decoder.final_layernorm.layer_idx),
            )
        else:
            for module_block in model.modules():
                if isinstance(module_block.to(nn.Module), MT5Embedding):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.to(nn.Module), ExtendedMask):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.to(nn.Module), TransformerLayer):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.to(nn.Module), MT5Loss):
                    module_block.to(flow.nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )

            model.mt5_model.encoder.final_layernorm.to(flow.nn.graph.GraphModule).set_stage(
                dist_utils.get_layer_stage_id(model.mt5_model.encoder.final_layernorm.layer_idx),
                dist.get_layer_placement(model.mt5_model.encoder.final_layernorm.layer_idx),
            )
            model.mt5_model.decoder.final_layernorm.to(flow.nn.graph.GraphModule).set_stage(
                dist_utils.get_layer_stage_id(model.mt5_model.decoder.final_layernorm.layer_idx),
                dist.get_layer_placement(model.mt5_model.decoder.final_layernorm.layer_idx),
            )

    @staticmethod
    def set_activation_checkpoint(model):
        for module_block in model.modules():
            # Old API in OneFlow 0.8
            if hasattr(module_block, "origin"):
                if isinstance(module_block.origin, TransformerLayer):
                    module_block.config.activation_checkpointing = True
            else:
                if isinstance(module_block.to(nn.Module), TransformerLayer):
                    module_block.to(nn.graph.GraphModule).activation_checkpointing = True