vit.py 5.58 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# --------------------------------------------------------
# ViT Model
# References:
# moco-v3: https://github.com/facebookresearch/moco-v3/blob/main/vits.py
# --------------------------------------------------------


import math
from functools import reduce
from operator import mul

import oneflow as flow
import oneflow.nn as nn
from flowvision.layers.weight_init import trunc_normal_
from utils.load_checkpoint import load_checkpoint

from libai.layers import Linear, PatchEmbedding
from libai.models import vision_transformer


class VisionTransformer(vision_transformer.VisionTransformer):
    """Vision Transformer for MOCO
    LiBai impl of: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        global_pool=False,
        num_classes=1000,
        loss_func=None,
        linear_prob=None,
        weight_style="pytorch",
        stop_grad_conv1=False,
    ):
        super(VisionTransformer, self).__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            drop_rate=drop_rate,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            num_classes=num_classes,
            loss_func=loss_func,
        )
        self.global_pool = global_pool

        # weight init
        if linear_prob:
            load_checkpoint(self, linear_prob, weight_style, num_heads, embed_dim)
            self.head.weight.data.normal_(mean=0.0, std=0.01)
            self.head.bias.data.zeros_()
        else:
            trunc_normal_(self.pos_embed, std=0.02)
            trunc_normal_(self.cls_token, std=0.02)
            self.apply(self._init_weights)

            self.stop_grad_conv1 = stop_grad_conv1
            self.embed_dim = embed_dim
            self.initialization()

    def initialization(self):

        # Use fixed 2D sin-cos position embedding
        self.build_2d_sincos_position_embedding()

        # weight initialization
        for name, m in self.named_modules():
            if isinstance(m, Linear):
                if "query_key_value" in name:
                    val = math.sqrt(6.0 / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
                    nn.init.uniform_(m.weight, -val, val)
                else:
                    nn.init.xavier_uniform_(m.weight)

                nn.init.zeros_(m.bias)
        nn.init.normal_(self.cls_token, std=1e-6)

        if isinstance(self.patch_embed, PatchEmbedding):
            # xavier_uniform initialization
            val = math.sqrt(
                6.0 / float(3 * reduce(mul, self.patch_embed.patch_size, 1) + self.embed_dim)
            )
            nn.init.uniform_(self.patch_embed.proj.weight, -val, val)
            nn.init.zeros_(self.patch_embed.proj.bias)

            if self.stop_grad_conv1:
                self.patch_embed.proj.weight.requires_grad = False
                self.patch_embed.proj.bias.requires_grad = False

    def build_2d_sincos_position_embedding(self, temperature=10000.0):
        sbp = self.pos_embed.sbp
        placement = self.pos_embed.placement

        h, w = self.patch_embed.grid_size
        grid_w = flow.arange(w, dtype=flow.float32).to_global(sbp=sbp, placement=placement)
        grid_h = flow.arange(h, dtype=flow.float32).to_global(sbp=sbp, placement=placement)
        grid_w, grid_h = flow.meshgrid(grid_w, grid_h)
        assert (
            self.embed_dim % 4 == 0
        ), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
        pos_dim = self.embed_dim // 4
        omega = (flow.arange(pos_dim, dtype=flow.float32) / pos_dim).to_global(
            sbp=sbp, placement=placement
        )
        omega = 1.0 / flow.tensor(temperature).to_global(sbp=sbp, placement=placement) ** omega
        out_w = flow.einsum("m,d->md", grid_w.flatten(), omega)
        out_h = flow.einsum("m,d->md", grid_h.flatten(), omega)
        pos_emb = flow.cat(
            [flow.sin(out_w), flow.cos(out_w), flow.sin(out_h), flow.cos(out_h)], dim=1
        )[None, :, :]
        pe_token = flow.zeros([1, 1, self.embed_dim], dtype=flow.float32).to_global(
            sbp=sbp, placement=placement
        )
        self.pos_embed = nn.Parameter(flow.cat([pe_token, pos_emb], dim=1))
        self.pos_embed.requires_grad = False

    def forward_head(self, x):
        if self.global_pool:
            x = x[:, 1:, :].mean(dim=1)  # global pool without cls token
            outcome = self.norm(x)
            outcome = self.head(outcome)
        else:
            x = self.norm(x)
            outcome = x[:, 0]
            outcome = self.head(outcome)
        return outcome