modeling_glm.py 18 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import oneflow as flow
import oneflow.nn.functional as F
from oneflow import nn

import libai.utils.distributed as dist
from libai.config import configurable
from libai.inference.generator.generation_utils import Generator
from libai.layers import LayerNorm, LMLogits, ParallelCrossEntropyLoss
from libai.models.utils import init_method_normal, scaled_init_method_normal
from projects.GLM.layers.embedding_layer import GLMEmbedding
from projects.GLM.layers.transformer_layer import TransformerLayer


class Transformer(nn.Module):
    def __init__(
        self,
        num_layers,
        hidden_size,
        num_attention_heads,
        attention_dropout_prob=0.0,
        output_dropout_prob=0.0,
        layernorm_epsilon=1.0e-5,
        init_method=nn.init.xavier_normal_,
        output_layer_init_method=None,
        bias_gelu_fusion=False,
        bias_dropout_fusion=False,
        scale_mask_softmax_fusion=False,
        apply_query_key_layer_scaling=False,
        attention_scale=1.0,
    ):
        super().__init__()
        self.num_layers = num_layers

        def build_layer(layer_number):
            return TransformerLayer(
                hidden_size,
                num_attention_heads,
                attention_dropout_prob=attention_dropout_prob,
                output_dropout_prob=output_dropout_prob,
                layernorm_epsilon=layernorm_epsilon,
                init_method=init_method,
                output_layer_init_method=output_layer_init_method,
                bias_gelu_fusion=bias_gelu_fusion,
                bias_dropout_fusion=bias_dropout_fusion,
                scale_mask_softmax_fusion=scale_mask_softmax_fusion,
                apply_query_key_layer_scaling=apply_query_key_layer_scaling,
                attention_scale=attention_scale,
                layer_idx=layer_number,
            )

        self.layers = nn.ModuleList([build_layer(i) for i in range(self.num_layers)])
        self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon, layer_idx=-1)

    def forward(self, hidden_states, attention_mask, memory_states=None):
        mem_layers = [hidden_states.detach()]

        for i, layer in enumerate(self.layers):
            mem_i = memory_states[i] if memory_states is not None else None
            hidden_states = layer(hidden_states, attention_mask, mem=mem_i)
            mem_layers.append(hidden_states.detach())

        output = self.final_layernorm(hidden_states)

        return output, mem_layers


class GLMModel(nn.Module):
    @configurable
    def __init__(
        self,
        num_layers,
        vocab_size,
        hidden_size,
        num_attention_heads,
        max_sequence_length=1024,
        embedding_dropout_prob=0.0,
        attention_dropout_prob=0.0,
        output_dropout_prob=0.0,
        layernorm_epsilon=1e-5,
        initializer_range=0.02,
        use_scaled_init_for_output_weights=True,
        bias_gelu_fusion=False,
        bias_dropout_fusion=False,
        scale_mask_softmax_fusion=False,
        apply_query_key_layer_scaling=False,
        amp_enabled=False,
        block_position_encoding=False,
        attention_scale=1.0,
        padding_idx=None,
    ):
        super().__init__()
        init_method = init_method_normal(sigma=initializer_range, mean=0)
        if use_scaled_init_for_output_weights:
            output_layer_init_method = scaled_init_method_normal(initializer_range, num_layers)
        else:
            output_layer_init_method = init_method

        self.embeddings = GLMEmbedding(
            vocab_size,
            hidden_size,
            max_sequence_length,
            padding_idx=padding_idx,
            init_method=init_method,
            embedding_dropout_prob=embedding_dropout_prob,
            amp_enabled=amp_enabled,
            block_position_encoding=block_position_encoding,
        )

        self.transformer = Transformer(
            num_layers,
            hidden_size,
            num_attention_heads,
            attention_dropout_prob=attention_dropout_prob,
            output_dropout_prob=output_dropout_prob,
            layernorm_epsilon=layernorm_epsilon,
            init_method=init_method,
            output_layer_init_method=output_layer_init_method,
            bias_gelu_fusion=bias_gelu_fusion,
            bias_dropout_fusion=bias_dropout_fusion,
            scale_mask_softmax_fusion=scale_mask_softmax_fusion,
            apply_query_key_layer_scaling=apply_query_key_layer_scaling,
            attention_scale=attention_scale,
        )

        self.lm_head = LMLogits(vocab_size, bias=False)

    @classmethod
    def from_config(cls, cfg):
        return {
            "num_layers": cfg.num_layers,
            "vocab_size": cfg.vocab_size,
            "hidden_size": cfg.hidden_size,
            "num_attention_heads": cfg.num_attention_heads,
            "max_sequence_length": cfg.max_sequence_length,
            "embedding_dropout_prob": cfg.embedding_dropout_prob,
            "attention_dropout_prob": cfg.attention_dropout_prob,
            "output_dropout_prob": cfg.output_dropout_prob,
            "layernorm_epsilon": cfg.layernorm_epsilon,
            "initializer_range": cfg.initializer_range,
            "use_scaled_init_for_output_weights": cfg.use_scaled_init_for_output_weights,
            "bias_gelu_fusion": cfg.bias_gelu_fusion,
            "bias_dropout_fusion": cfg.bias_dropout_fusion,
            "scale_mask_softmax_fusion": cfg.scale_mask_softmax_fusion,
            "apply_query_key_layer_scaling": cfg.apply_query_key_layer_scaling,
            "amp_enabled": cfg.amp_enabled,
            "block_position_encoding": cfg.block_position_encoding,
            "attention_scale": cfg.attention_scale,
            "padding_idx": cfg.padding_idx,
        }

    def forward(
        self,
        input_ids,
        position_ids=None,
        attention_mask=None,
        memory_states=None,
        output_predict=True,
    ):
        input_ids = input_ids.to_global(placement=dist.get_layer_placement(0))
        position_ids = (
            position_ids.to_global(placement=dist.get_layer_placement(0))
            if position_ids is not None
            else None
        )
        attention_mask = (
            attention_mask.to_global(placement=dist.get_layer_placement(0))
            if attention_mask is not None
            else None
        )

        batch_size, query_length = input_ids.size()
        memory_length = memory_states[0].size(1) if memory_states is not None else 0
        is_scalar = flow.numel(attention_mask) == 1
        is_sep = is_scalar or flow.numel(attention_mask) == batch_size

        if is_sep:
            sep = attention_mask.item() if is_scalar else attention_mask
            attention_mask = self.build_mask_matrix(
                batch_size, query_length, sep, memory_length=memory_length, is_scalar=is_scalar
            )
        else:
            if attention_mask.dim() == 2:
                attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
            attention_mask = attention_mask[:, :, :, -query_length - memory_length :]

        input_embeds = self.embeddings(input_ids, position_ids)

        logits, mem_layers = self.transformer(
            input_embeds, attention_mask=attention_mask, memory_states=memory_states
        )
        mem_layers = self.update_mems(mem_layers, memory_states)

        if output_predict:
            logits = self.lm_head(logits, self.embeddings.word_embeddings.weight)

        return (logits, mem_layers)

    @staticmethod
    def set_activation_checkpoint(model):
        for module_block in model.modules():
            # Old API in OneFlow 0.8
            if hasattr(module_block, "origin"):
                if isinstance(module_block.origin, TransformerLayer):
                    module_block.config.activation_checkpointing = True
            else:
                if isinstance(module_block.to(nn.Module), TransformerLayer):
                    module_block.to(nn.graph.GraphModule).activation_checkpointing = True

    def build_mask_matrix(self, batch_size, seq_length, sep, memory_length=0, is_scalar=False):
        m = flow.tril(
            flow.ones((1, seq_length, seq_length)),
        )
        if is_scalar:
            m[0, :, : int(sep)] = 1
        else:
            m = m.expand(batch_size, -1, -1)
            ids = flow.arange(seq_length, device=sep.device, dtype=sep.dtype).view(1, -1)
            mask = ids < sep.view(-1, 1)
            m = m.masked_fill(mask.unsqueeze(1).expand_as(m), 1)
        if memory_length > 0:
            m = m.expand(batch_size, -1, -1)
            m = flow.cat((flow.ones((batch_size, seq_length, memory_length)), m), dim=2)
        m = m.unsqueeze(1)
        m = m.to_global(
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            placement=dist.get_layer_placement(0),
        )
        return m

    def update_mems(self, hiddens, mems):
        memory_length = mems[0].size(1) if mems is not None else 0
        query_length = hiddens[0].size(1)
        new_memory_length = memory_length + query_length

        new_mems = []
        for i in range(len(hiddens)):
            if new_memory_length <= query_length:
                new_mems.append(hiddens[i][:, -new_memory_length:])
            else:
                new_mems.append(
                    flow.cat((mems[i][:, -new_memory_length + query_length :], hiddens[i]), dim=1)
                )
        return new_mems


class GLMLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.loss_func = ParallelCrossEntropyLoss()

    def forward(self, logits, labels):
        lm_loss = self.loss_func(logits, labels)
        lm_loss = lm_loss.mean()
        return {"lm_loss": lm_loss}


class GLMForMultipleChoice(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.glm = GLMModel(cfg)
        self.loss_func = GLMLoss()

    def forward(
        self,
        input_ids=None,
        position_ids=None,
        attention_mask=None,
        choice_ids=None,
        choice_indices=None,
        labels=None,
        mems=None,
        **kwargs,
    ):
        lm_logits, mem_layers = self.glm(
            input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            memory_states=mems,
            **kwargs,
        )
        outputs = F.log_softmax(lm_logits, dim=-1)
        log_probs = []
        for output, choices, choice_index in zip(outputs, choice_ids, choice_indices):
            log_probs_single = []
            for choice, choice_target_id in zip(choices, choice_index):
                tmp = output[choice_target_id, choice]
                log_probs_single.append(tmp.sum())
            log_probs.append(flow.stack(log_probs_single))
        log_probs = flow.stack(log_probs)
        loss = None
        if labels is not None:
            loss = self.loss_func(log_probs, labels)
        return {"loss": loss, "logits": log_probs, "lm_logits": lm_logits, "mems": mem_layers}


class GLMForConditionalGeneration(nn.Module, Generator):
    @configurable
    def __init__(
        self,
        num_layers,
        vocab_size,
        hidden_size,
        num_attention_heads,
        max_sequence_length=1024,
        embedding_dropout_prob=0.0,
        attention_dropout_prob=0.0,
        output_dropout_prob=0.0,
        layernorm_epsilon=1e-5,
        initializer_range=0.02,
        use_scaled_init_for_output_weights=True,
        bias_gelu_fusion=False,
        bias_dropout_fusion=False,
        scale_mask_softmax_fusion=False,
        apply_query_key_layer_scaling=False,
        amp_enabled=False,
        block_position_encoding=False,
        attention_scale=1.0,
        padding_idx=None,
        cfg=None,
    ):
        super().__init__()
        self.cfg = cfg
        self.glm = GLMModel(
            num_layers=num_layers,
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            max_sequence_length=max_sequence_length,
            embedding_dropout_prob=embedding_dropout_prob,
            attention_dropout_prob=attention_dropout_prob,
            output_dropout_prob=output_dropout_prob,
            layernorm_epsilon=layernorm_epsilon,
            initializer_range=initializer_range,
            use_scaled_init_for_output_weights=use_scaled_init_for_output_weights,
            bias_gelu_fusion=bias_gelu_fusion,
            bias_dropout_fusion=bias_dropout_fusion,
            scale_mask_softmax_fusion=scale_mask_softmax_fusion,
            apply_query_key_layer_scaling=apply_query_key_layer_scaling,
            amp_enabled=amp_enabled,
            block_position_encoding=block_position_encoding,
            attention_scale=attention_scale,
            padding_idx=padding_idx,
            cfg=cfg,
        )
        self.loss_func = GLMLoss()

    @classmethod
    def from_config(cls, cfg):
        return {
            "num_layers": cfg.num_layers,
            "vocab_size": cfg.vocab_size,
            "hidden_size": cfg.hidden_size,
            "num_attention_heads": cfg.num_attention_heads,
            "max_sequence_length": cfg.max_sequence_length,
            "embedding_dropout_prob": cfg.embedding_dropout_prob,
            "attention_dropout_prob": cfg.attention_dropout_prob,
            "output_dropout_prob": cfg.output_dropout_prob,
            "layernorm_epsilon": cfg.layernorm_epsilon,
            "initializer_range": cfg.initializer_range,
            "use_scaled_init_for_output_weights": cfg.use_scaled_init_for_output_weights,
            "bias_gelu_fusion": cfg.bias_gelu_fusion,
            "bias_dropout_fusion": cfg.bias_dropout_fusion,
            "scale_mask_softmax_fusion": cfg.scale_mask_softmax_fusion,
            "apply_query_key_layer_scaling": cfg.apply_query_key_layer_scaling,
            "amp_enabled": cfg.amp_enabled,
            "block_position_encoding": cfg.block_position_encoding,
            "attention_scale": cfg.attention_scale,
            "padding_idx": cfg.padding_idx,
            "cfg": cfg,
        }

    def forward(
        self,
        input_ids=None,
        position_ids=None,
        attention_mask=None,
        labels=None,
        memory_states=None,
        **kwargs,
    ):
        lm_logits, mems = self.glm(
            input_ids, position_ids, attention_mask, memory_states=memory_states, **kwargs
        )
        loss = None
        if labels is not None:
            loss = self.loss_func(lm_logits, labels)
        return {"loss": loss, "logits": lm_logits, "mems": mems}

    def _reorder_cache(self, past, beam_idx):
        if past is None:
            return past
        reordered_decoder_past = ()
        for layer_past_states in past:
            beam_idx = beam_idx.to_global(placement=layer_past_states.placement)
            reordered_decoder_past = reordered_decoder_past + (
                layer_past_states.index_select(0, beam_idx),
            )
        return reordered_decoder_past

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past=None,
        position_ids=None,
        generation_attention_mask=None,
        **kwargs,
    ):
        attention_mask = generation_attention_mask
        # only last token for inputs_ids if past is defined in kwargs
        seq_length = input_ids.shape[1]
        if past:
            if position_ids is not None:
                position_ids = position_ids[:, :, seq_length - 1].unsqueeze(-1)
            if attention_mask is not None:
                attention_mask = attention_mask[:, :, seq_length - 1, :seq_length].unsqueeze(-2)
            input_ids = input_ids[:, -1].unsqueeze(-1)
        else:
            if position_ids is not None:
                position_ids = position_ids[:, :, :seq_length]
            if attention_mask is not None:
                attention_mask = attention_mask[:, :, :seq_length, :seq_length]
        return {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "memory_states": past,
        }

    @staticmethod
    def set_pipeline_stage_id(model: nn.Module):
        dist_utils = dist.get_dist_util()

        if hasattr(model.glm.transformer.final_layernorm, "config"):
            # Old API in OneFlow 0.8
            for module_block in model.modules():
                if isinstance(module_block.origin, GLMEmbedding):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.origin, TransformerLayer):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.origin, (LMLogits, GLMLoss)):
                    module_block.config.set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )

            model.glm.transformer.final_layernorm.config.set_stage(
                dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
            )
        else:
            for module_block in model.modules():
                if isinstance(module_block.to(nn.Module), GLMEmbedding):
                    module_block.to(nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0)
                    )
                elif isinstance(module_block.to(nn.Module), TransformerLayer):
                    module_block.to(nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(module_block.layer_idx),
                        dist.get_layer_placement(module_block.layer_idx),
                    )
                elif isinstance(module_block.to(nn.Module), (LMLogits, GLMLoss)):
                    module_block.to(nn.graph.GraphModule).set_stage(
                        dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
                    )

            model.glm.transformer.final_layernorm.to(nn.graph.GraphModule).set_stage(
                dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1)
            )