tokenization_base.py 51.4 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""copy from HuggingFace transformer repo, to tokenize the sentence.
This class only focus on tokenization, converting token to id and their inverse operation.
It does not construct inputs using special symbols."""

import copy
import itertools
import json
import logging
import os
import unicodedata
from io import open
from typing import Dict, List, Optional, Union

import numpy as np
import oneflow as flow

from libai.utils import distributed as dist
from libai.utils.file_io import PathManager
from libai.utils.file_utils import cached_path

logger = logging.getLogger(__name__)


def _is_whitespace(char):
    """Checks whether `char` is a whitespace character."""
    # \t, \n, and \r are technically control characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `char` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `char` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if (
        (cp >= 33 and cp <= 47)
        or (cp >= 58 and cp <= 64)
        or (cp >= 91 and cp <= 96)
        or (cp >= 123 and cp <= 126)
    ):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False


SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"


class PreTrainedTokenizer(object):
    """
    Base class for all tokenizers.

    Handle all the shared methods for tokenization and special tokens, methods
    dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
    This class also contains the added tokens in a unified way on top of all tokenizers, so we don't
    have to handle the specific vocabulary augmentation methods of the various underlying
    dictionary structures (BPE, sentencepiece...).

    Class attributes (overridden by derived classes):

        ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of
        each vocabulary file required by the model, and as associated values, the filename for
        saving the associated file (string).

        ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the
        ``__init__`` keyword name of each vocabulary file required by the model, the low-level
        being the `short-cut-names` (string) of the pretrained models with, as associated values,
        the `url` (string) to the associated pretrained vocabulary file.

        ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string)
        of the pretrained models, and as associated values, the maximum length of the sequence
        inputs of this model, or None if the model has no maximum input size.

        ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names`
        (string) of the pretrained models, and as associated values, a dictionnary of specific
        arguments to pass to the ``__init__`` method of the tokenizer class for this pretrained
        model when loading the tokenizer with the ``from_pretrained()`` method.

    Args:
        bos_token (:obj:`str`, `optional`): A special token representing the beginning of a
            sentence.
        eos_token (:obj:`str`, `optional`): A special token representing the end of a sentence.
        unk_token (:obj:`str`, `optional`): A special token representing an out-of-vocabulary token.
        sep_token (:obj:`str`, `optional`): A special token separating two different sentences in
            the same input (used by BERT for instance).
        pad_token (:obj:`str`, `optional`): A special token used to make arrays of tokens the same
            size for batching purpose.
            Will then be ignored by attention mechanisms or loss computation.
        cls_token (:obj:`str`, `optional`): A special token representing the class of the input
            (used by BERT for instance).
        mask_token (:obj:`str`, `optional`): A special token representing a masked token (used by
            masked-language modeling pretraining objectives, like BERT).
        eod_token (:obj:`str`, `optional`): A special token representing the end of a document.
            additional_special_tokens (tuple or list of :obj:`str`, `optional`):
            A tuple or a list of additional special tokens.
    """

    vocab_files_names = {}
    pretrained_vocab_files_map = {}
    pretrained_init_configuration = {}
    max_model_input_sizes = {}

    SPECIAL_TOKENS_ATTRIBUTES = [
        "bos_token",
        "eos_token",
        "unk_token",
        "sep_token",
        "pad_token",
        "cls_token",
        "mask_token",
        "eod_token",
        "additional_special_tokens",
    ]

    def __init__(self, verbose=True, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._eod_token = None
        self._additional_special_tokens = []
        self.verbose = verbose

        # Added tokens - We store this for both slow and fast tokenizers
        # until the serialization of Fast tokenizers is updated
        self.added_tokens_encoder: Dict[str, int] = {}
        self.added_tokens_decoder: Dict[int, str] = {}
        self.unique_no_split_tokens: List[str] = []

        # inputs and kwargs for saving and re-loading
        # (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = {}

        # We directly set the hidden value to allow initialization with special tokens
        # which are not yet in the vocabulary. Necessary for serialization/de-serialization
        for key, value in kwargs.items():
            if value is None:
                continue
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
                if key == "additional_special_tokens":
                    assert all(
                        isinstance(t, str) for t in value
                    ), "One of the tokens is not a string"
                    setattr(self, key, list(value))
                elif isinstance(value, str):
                    setattr(self, key, value)
                else:
                    raise TypeError(f"special token {key} has to be str but got: {type(value)}")

    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
        r"""
        Instantiate a :class:`~PreTrainedTokenizer` (or a derived class) from a
        predefined tokenizer.

        Args:
            pretrained_model_name_or_path(`str` or `os.PathLike`):
                Can be either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache
                  or download, e.g.: ``bert-base-uncased``.

                - a path to a `directory` containing vocabulary files required by the tokenizer,
                  for instance saved using the :func:`~PreTrainedTokenizer.save_pretrained`
                  method, e.g., ``./my_model_directory/``.

                - (not applicable to all derived classes) a path or url to a single saved
                  vocabulary file if and only if the tokenizer only requires a single vocabulary
                  file (e.g. Bert, XLNet), e.g., ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files
                should be cached if the standard cache should not be used.
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if
                they exist.
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint,
                e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.
            inputs: (`optional`) positional arguments: will be passed to the
                Tokenizer ``__init__`` method.
            kwargs: (`optional`) keyword arguments: will be passed to the
                Tokenizer ``__init__`` method. Can be used to set special tokens
                like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``,
                ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``.
                See parameters in the doc string of :class:`~PreTrainedTokenizer`
                for details.

        Examples:

        .. code-block:: python

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's
            # show our examples on a derived class: BertTokenizer
            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            # If vocabulary files are in a directory (e.g. tokenizer was
            # saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')
            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')
            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'
        """
        return cls._from_pretrained(*inputs, **kwargs)

    @classmethod
    def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)

        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
        init_configuration = {}
        if pretrained_model_name_or_path in s3_models:
            # Get the vocabulary from AWS S3 bucket
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
            if (
                cls.pretrained_init_configuration
                and pretrained_model_name_or_path in cls.pretrained_init_configuration
            ):
                init_configuration = cls.pretrained_init_configuration[
                    pretrained_model_name_or_path
                ]
        else:
            # Get the vocabulary from local files
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path,
                    ", ".join(s3_models),
                    pretrained_model_name_or_path,
                )
            )

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
                if os.path.isdir(pretrained_model_name_or_path):
                    # If a directory is provided we look for the standard filenames
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
                    # If a path to a file is provided we use it (will only work for non-BPE
                    # tokenizer using a single vocabulary file)
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

            # Look for the additional tokens files
            additional_files_names = {
                "added_tokens_file": ADDED_TOKENS_FILE,
                "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE,
                "tokenizer_config_file": TOKENIZER_CONFIG_FILE,
            }

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

            for file_id, file_name in additional_files_names.items():
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path,
                        ", ".join(s3_models),
                        pretrained_model_name_or_path,
                    )
                )
                return None

        # Get files from url, cache, or disk depending on the case
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
                    resolved_vocab_files[file_id] = cached_path(
                        file_path,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                    )
        except EnvironmentError as e:
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path,
                        ", ".join(s3_models),
                        pretrained_model_name_or_path,
                        str(vocab_files.keys()),
                    )
                )
            raise e

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info(
                    "loading file {} from cache at {}".format(
                        file_path, resolved_vocab_files[file_id]
                    )
                )

        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None)
        if tokenizer_config_file is not None:
            init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8"))
            saved_init_inputs = init_kwargs.pop("init_inputs", ())
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            init_kwargs = init_configuration

        # Update with newly provided kwargs
        init_kwargs.update(kwargs)

        # Merge resolved_vocab_files arguments in init_kwargs.
        added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None)
        special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None)
        for args_name, file_path in resolved_vocab_files.items():
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path

        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
                if key not in init_kwargs:
                    init_kwargs[key] = value

        # Instantiate tokenizer.
        tokenizer = cls(*init_inputs, **init_kwargs)

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        tokenizer.init_inputs = init_inputs
        tokenizer.init_kwargs = init_kwargs

        # Add supplementary tokens.
        special_tokens = tokenizer.all_special_tokens
        if added_tokens_file is not None:
            with open(added_tokens_file, encoding="utf-8") as added_tokens_handle:
                added_tok_encoder = json.load(added_tokens_handle)

            # Sort added tokens by index
            added_tok_encoder_sorted = list(sorted(added_tok_encoder.items(), key=lambda x: x[1]))

            for token, index in added_tok_encoder_sorted:
                assert index == len(tokenizer), (
                    f"Non-consecutive added token '{token}' found. "
                    f"Should have index {len(tokenizer)} but has index {index} in saved vocabulary."
                )
                tokenizer.add_tokens(token, special_tokens=bool(token in special_tokens))

        # Check all our special tokens are registered as "no split" token
        # (we don't cut them) and are in the vocab
        added_tokens = tokenizer.sanitize_special_tokens()
        if added_tokens:
            logger.warning(
                "Special tokens have been added in the vocabulary,"
                "make sure the associated word embedding are fine-tuned or trained."
            )

        return tokenizer

    def save_pretrained(self, save_directory):
        """
        Save the tokenizer vocabulary files together with:

            - added tokens,
            - special-tokens-to-class-attributes-mapping,
            - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert).

        This won't save modifications other than ``added tokens`` and ``special token mapping``,
        you may have applied to the tokenizer after the instantiation (e.g. modifying
        tokenizer.do_lower_case after creation).
        This method make sure the full tokenizer can then be re-loaded using the
        :func:`~PreTrainedTokenizer.from_pretrained` class method.
        """
        if not PathManager.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return
        PathManager.mkdirs(save_directory)

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)
        tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE)

        tokenizer_config = copy.deepcopy(self.init_kwargs)
        if len(self.init_inputs) > 0:
            tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)

        with open(tokenizer_config_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(tokenizer_config, ensure_ascii=False))

        with open(special_tokens_map_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        added_vocab = self.get_added_vocab()
        if added_vocab:
            with open(added_tokens_file, "w", encoding="utf-8") as f:
                out_str = json.dumps(added_vocab, ensure_ascii=False)
                f.write(out_str)

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)

    def save_vocabulary(self, save_directory):
        """Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
        and special token mappings.
        Please use :func:`~PreTrainedTokenizer.save_pretrained` to save the
        full Tokenizer state if you want to reload it using the
        :func:`~PreTrainedTokenizer.from_pretrained` class method.
        """
        raise NotImplementedError

    @property
    def vocab_size(self) -> int:
        """Size of the base vocabulary (without the added tokens)."""
        raise NotImplementedError

    def padded_vocab_size(self, multiple=1) -> int:
        """Padded the vocabulary with dummy tokens and return the new size."""
        vocab_size = len(self)
        while vocab_size % multiple != 0:
            vocab_size += 1
        return vocab_size

    def __len__(self):
        """Size of the full vocabulary with the added tokens."""
        return self.vocab_size + len(self.added_tokens_encoder)

    def get_vocab(self) -> Dict[str, int]:
        """
        Returns the vocabulary as a dictionary of token to index.
        :obj:`tokenizer.get_vocab()[token]` is equivalent to
        :obj:`tokenizer.convert_tokens_to_ids(token)`
        when :obj:`token` is in the vocab.

        Returns:
            :obj:`Dict[str, int]`: The vocabulary.
        """
        raise NotImplementedError

    def get_added_vocab(self) -> Dict[str, int]:
        """
        Returns the added tokens in the vocabulary as a dictionary of token to index.

        Returns:
            :obj:`Dict[str, int]`: The added tokens.
        """
        return self.added_tokens_encoder

    def add_tokens(self, new_tokens: Union[str, List[str]], special_tokens: bool = False) -> int:
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
        vocabulary, they are added to it with indices starting from the length of
        the current vocabulary.

        .. Note::
            When adding new tokens to the vocabulary, you should make sure to also resize
            the token embedding matrix of the model so that its embedding matrix matches
            the tokenizer.
            In order to do that, please use the
            :meth:`~PreTrainedModel.resize_token_embeddings` method.

        Args:
            new_tokens (:obj:`str`, or a list of `str`):
                Tokens are only added if they are not already in the vocabulary.
            special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Can be used to specify if the token is a special token. This mostly change
                the normalization behavior
                (special tokens like CLS or [MASK] are usually not lower-cased for instance).

        Returns:
            :obj:`int`: Number of tokens added to the vocabulary.

        Examples:

        .. code-block:: python

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')
            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
             # Notice: resize_token_embeddings expect to receive the full size of the new
             # vocabulary, i.e., the length of the tokenizer.
            model.resize_token_embeddings(len(tokenizer))
        """
        if not new_tokens:
            return 0

        if not isinstance(new_tokens, (list, tuple)):
            new_tokens = [new_tokens]

        tokens_to_add = []
        for token in new_tokens:
            if not isinstance(token, str):
                raise TypeError(f"Token {token} is not a string but a {type(token)}.")
            if not special_tokens and hasattr(self, "do_lower_case") and self.do_lower_case:
                token = token.lower()
            if (
                token != self.unk_token
                and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
                and token not in tokens_to_add
            ):
                tokens_to_add.append(token)
                if self.verbose:
                    logger.info(f"Adding {token} to the vocabulary")

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
        added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        if special_tokens:
            self.unique_no_split_tokens = sorted(
                set(self.unique_no_split_tokens).union(set(new_tokens))
            )
        else:
            self.unique_no_split_tokens = sorted(
                set(self.unique_no_split_tokens).union(set(tokens_to_add))
            )

        return len(tokens_to_add)

    def sanitize_special_tokens(self) -> int:
        """
        Make sure that all the special tokens attributes of the tokenizer
        (:obj:`tokenizer.mask_token`, :obj:`tokenizer.cls_token`, etc.)
        are in the vocabulary.

        Add the missing ones to the vocabulary if needed.

        Return:
            :obj:`int`: The number of tokens added in the vocaulary during the operation.
        """
        return self.add_tokens(self.all_special_tokens, special_tokens=True)

    def add_special_tokens(self, special_tokens_dict: Dict[str, str]) -> int:
        """
        Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to
        class attributes. If special tokens are NOT in the vocabulary, they are added to it
        (indexed starting from the last index of the current vocabulary).

        .. Note::
            When adding new tokens to the vocabulary, you should make sure to also resize the
            token embedding matrix of the model so that its embedding matrix matches the tokenizer.
            In order to do that, please use the
            :meth:`~PreTrainedModel.resize_token_embeddings` method.

        Using :obj:`add_special_tokens` will ensure your special tokens can be used in several ways:
        - Special tokens are carefully handled by the tokenizer (they are never split).
        - You can easily refer to special tokens using tokenizer class attributes like
        :obj:`tokenizer.cls_token`. This makes it easy to develop model-agnostic training and
        fine-tuning scripts.
        When possible, special tokens are already registered for provided pretrained models
        (for instance :class:`~BertTokenizer` :obj:`cls_token` is already registered
        to be :obj`'[CLS]'` and XLM's one is also registered to be :obj:`'</s>'`).

        Args:
            special_tokens_dict (dictionary `str` to `str`):
                Keys should be in the list of predefined special attributes: [``bos_token``,
                ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``,
                ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
                Tokens are only added if they are not already in the vocabulary (tested by
                checking if the tokenizer assign the index of the ``unk_token`` to them).

        Returns:
            :obj:`int`: Number of tokens added to the vocabulary.

        Examples:

        .. code-block:: python

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')
            special_tokens_dict = {'cls_token': '<CLS>'}
            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary,
            # i.e., the length of the tokenizer.
            model.resize_token_embeddings(len(tokenizer))
            assert tokenizer.cls_token == '<CLS>'
        """
        if not special_tokens_dict:
            return 0

        added_tokens = 0
        for key, value in special_tokens_dict.items():
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token"

            if self.verbose:
                logger.info(f"Assigning {value} to the {key} key of the tokenizer")
            setattr(self, key, value)

            if key == "additional_special_tokens":
                assert isinstance(value, (list, tuple)) and all(
                    isinstance(t, str) for t in value
                ), f"Tokens {value} for key {key} should all be a string"
                added_tokens += self.add_tokens(value, special_tokens=True)
            else:
                assert isinstance(value, str), f"Token {value} for key {key} should be a string"
                added_tokens += self.add_tokens([value], special_tokens=True)

        return added_tokens

    def tokenize(self, text: str, **kwargs) -> List[str]:
        """
        Converts a string in a sequence of tokens, using the tokenizer.
        Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
        (BPE/SentencePieces/WordPieces). Take care of added tokens.

        Args:
            text (:obj:`str`):
                The sequence to be encoded.
            **kwargs (additional keyword arguments):
                Passed along to the model-specific ``prepare_for_tokenization``
                preprocessing method.

        Returns:
            :obj:`List[str]`: The list of tokens.
        """

        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.unique_no_split_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text
            return list(
                itertools.chain.from_iterable(
                    (
                        self._tokenize(token)
                        if token not in self.unique_no_split_tokens
                        else [token]
                        for token in tokenized_text
                    )
                )
            )

        no_split_token = self.unique_no_split_tokens
        tokenized_text = split_on_tokens(no_split_token, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for
        word-based vocabulary or sub-words for sub-word-based vocabularies
        (BPE/SentencePieces/WordPieces).
        Do NOT take care of added tokens.
        """
        raise NotImplementedError

    def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
        """Converts a token string (or a sequence of tokens) in a single integer id
        (or a sequence of ids), using the vocabulary.
        """
        if tokens is None:
            return None

        if isinstance(tokens, str):
            return self._convert_token_to_id_with_added_voc(tokens)

        if len(tokens) > 0 and isinstance(tokens[0], list):
            ids = []
            for ts in tokens:
                ids_x = []
                for token in ts:
                    ids_x.append(self._convert_token_to_id_with_added_voc(token))
                ids.append(ids_x)
            return ids

        ids = []
        for token in tokens:
            ids.append(self._convert_token_to_id_with_added_voc(token))
        return ids

    def convert_to_tensors(self, token_ids, return_tensors=None, is_global=False, **kwargs):
        if return_tensors is None:
            return_token_ids = token_ids
        elif return_tensors == "of":
            if not is_global:
                return_token_ids = flow.tensor(token_ids, dtype=flow.long)
            elif is_global:
                sbp = kwargs.get("sbp", dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]))
                placement = kwargs.get(
                    "placement", flow.placement("cuda", list(range(dist.get_world_size())))
                )
                return_token_ids = flow.tensor(
                    token_ids, sbp=sbp, placement=placement, dtype=flow.long
                )
        elif return_tensors == "np":
            return_token_ids = np.array(token_ids, dtype=np.int64)
        return return_token_ids

    def _convert_token_to_id_with_added_voc(self, token):
        if token is None:
            return None

        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
        raise NotImplementedError

    def encode(self, text, return_tensors=None, is_global=False, **kwargs):
        if isinstance(text, str):
            tokens = self.tokenize(text)
            token_ids = self.convert_tokens_to_ids(tokens)
            token_ids = self.build_inputs_with_special_tokens(token_ids)
            token_ids = self.convert_to_tensors(
                token_ids, return_tensors=return_tensors, is_global=is_global, **kwargs
            )
            return token_ids
        elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
            tokens = [self.tokenize(t) for t in text]
            token_ids_list = self.convert_tokens_to_ids(tokens)
            token_ids_list = [
                self.build_inputs_with_special_tokens(token_ids) for token_ids in token_ids_list
            ]
            token_ids_list = self.convert_to_tensors(
                token_ids_list, return_tensors=return_tensors, is_global=is_global, **kwargs
            )
            return token_ids_list
        elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
            return text
        else:
            raise ValueError(
                "Input is not valid. Should be a string, a list/tuple of strings or "
                "a list/tuple of integers."
            )

    def convert_ids_to_tokens(
        self, ids: Union[int, List[int]], skip_special_tokens: bool = False
    ) -> Union[str, List[str]]:
        """
        Converts a single index or a sequence of indices in a token or a sequence of tokens,
        using the vocabulary and added tokens.

        Args:
            ids (:obj:`int` or :obj:`List[int]`):
                The token id (or token ids) to convert to tokens.
            skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to remove special tokens in the decoding.
        Returns:
            :obj:`str` or :obj:`List[str]`: The decoded token(s).
        """
        if isinstance(ids, int):
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
        tokens = []
        for index in ids:
            if skip_special_tokens and index in self.all_special_ids:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index: int) -> str:
        raise NotImplementedError

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """
        Converts a sequence of tokens to a single string. The most simple way to do it is
        ``" ".join(tokens)`` but we often want to remove sub-word tokenization artifacts
        at the same time.

        Args:
            tokens (:obj:`List[str]`): The token to join in a string.

        Returns:
            :obj:`str`: The joined tokens.
        """
        return " ".join(tokens)

    def decode(
        self,
        token_ids,
        skip_special_tokens=False,
        clean_up_tokenization_spaces=True,
        spaces_between_special_tokens: bool = True,
    ):
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.

        Args:
            token_ids: list of tokenized input ids. Can be obtained using the `encode` or
            `encode_plus` methods.
            skip_special_tokens: if set to True, will replace special tokens.
            clean_up_tokenization_spaces: if set to True, will clean up the tokenization spaces.
        """
        # Convert inputs to python lists
        if isinstance(token_ids, flow.Tensor):
            token_ids = token_ids.tolist()

        filtered_tokens = self.convert_ids_to_tokens(
            token_ids, skip_special_tokens=skip_special_tokens
        )

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separately for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/transformers/issues/1133
        sub_texts = []
        current_sub_text = []
        for token in filtered_tokens:
            if skip_special_tokens and token in self.all_special_ids:
                continue
            if token in self.added_tokens_encoder:
                if current_sub_text:
                    sub_texts.append(self.convert_tokens_to_string(current_sub_text))
                    current_sub_text = []
                sub_texts.append(token)
            else:
                current_sub_text.append(token)
        if current_sub_text:
            sub_texts.append(self.convert_tokens_to_string(current_sub_text))

        if spaces_between_special_tokens:
            text = " ".join(sub_texts)
        else:
            text = "".join(sub_texts)

        if clean_up_tokenization_spaces:
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text

    @property
    def bos_token(self) -> str:
        """
        :obj:`str`: Beginning of sentence token. Log an error if used while not having been set.
        """
        if self._bos_token is None and self.verbose:
            logger.error("Using bos_token, but it is not set yet.")
            return None
        return str(self._bos_token)

    @property
    def eos_token(self) -> str:
        """
        :obj:`str`: End of sentence token. Log an error if used while not having been set.
        """
        if self._eos_token is None and self.verbose:
            logger.error("Using eos_token, but it is not set yet.")
            return None
        return str(self._eos_token)

    @property
    def unk_token(self) -> str:
        """
        :obj:`str`: Unknown token. Log an error if used while not having been set.
        """
        if self._unk_token is None and self.verbose:
            logger.error("Using unk_token, but it is not set yet.")
            return None
        return str(self._unk_token)

    @property
    def sep_token(self) -> str:
        """
        :obj:`str`: Separation token, to separate context and query in an input sequence.
        Log an error if used while not having been set.
        """
        if self._sep_token is None and self.verbose:
            logger.error("Using sep_token, but it is not set yet.")
            return None
        return str(self._sep_token)

    @property
    def pad_token(self) -> str:
        """
        :obj:`str`: Padding token. Log an error if used while not having been set.
        """
        if self._pad_token is None and self.verbose:
            logger.error("Using pad_token, but it is not set yet.")
            return None
        return str(self._pad_token)

    @property
    def cls_token(self) -> str:
        """
        :obj:`str`: Classification token, to extract a summary of an input sequence leveraging
        self-attention along the full depth of the model.
        Log an error if used while not having been set.
        """
        if self._cls_token is None and self.verbose:
            logger.error("Using cls_token, but it is not set yet.")
            return None
        return str(self._cls_token)

    @property
    def mask_token(self) -> str:
        """
        :obj:`str`: Mask token, to use when training a model with masked-language modeling.
        Log an error if used while not having been set.
        """
        if self._mask_token is None and self.verbose:
            logger.error("Using mask_token, but it is not set yet.")
            return None
        return str(self._mask_token)

    @property
    def eod_token(self) -> str:
        """
        :obj:`str`: End of document token. Log an error if used while not having been set.
        """
        if self._eod_token is None and self.verbose:
            logger.error("Using eod_token, but it is not set yet.")
            return None
        return str(self._eod_token)

    @property
    def start_token(self) -> str:
        """
        :obj:`str`: Start token of sentence. Common name for bos_token and cls_token.
        """
        if self._bos_token is not None and self._cls_token is not None:
            if self._bos_token == self._cls_token:
                return str(self._bos_token)
            else:
                logger.error("Conflict between bos_token and cls_token.")
                return None
        elif self._bos_token is None and self._cls_token is not None:
            return str(self._cls_token)
        elif self._bos_token is not None and self._cls_token is None:
            return str(self._bos_token)
        else:
            logger.error("Using start_token, but it is not set yet.")
            return None

    @property
    def end_token(self) -> str:
        """
        :obj:`str`: End token of sentence. Common name for eos_token and sep_token.
        Note: eod_token is not considered, because it is often same with eos_token.
        """
        if self._eos_token is not None and self._sep_token is not None:
            if self._eos_token == self._sep_token:
                return str(self._eos_token)
            else:
                logger.error("Conflict between eos_token and _sep_token.")
                return None
        elif self._eos_token is None and self._sep_token is not None:
            return str(self._sep_token)
        elif self._eos_token is not None and self._sep_token is None:
            return str(self._eos_token)
        else:
            logger.error("Using end_token, but it is not set yet.")
            return None

    @property
    def additional_special_tokens(self) -> List[str]:
        """
        :obj:`List[str]`: All the additional special tokens you may want to use.
        Log an error if used while not having been set.
        """
        if self._additional_special_tokens is None and self.verbose:
            logger.error("Using additional_special_tokens, but it is not set yet.")
            return None
        return [str(tok) for tok in self._additional_special_tokens]

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @eod_token.setter
    def eod_token(self, value):
        self._eod_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

    @property
    def bos_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the beginning of sentence token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        if self._bos_token is None:
            return None
        return self.convert_tokens_to_ids(self.bos_token)

    @property
    def eos_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the end of sentence token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        if self._eos_token is None:
            return None
        return self.convert_tokens_to_ids(self.eos_token)

    @property
    def unk_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the unknown token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        if self._unk_token is None:
            return None
        return self.convert_tokens_to_ids(self.unk_token)

    @property
    def sep_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the separation token in the vocabulary,
        to separate context and query in an input sequence.
        Returns :obj:`None` if the token has not been set.
        """
        if self._sep_token is None:
            return None
        return self.convert_tokens_to_ids(self.sep_token)

    @property
    def pad_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the padding token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        if self._pad_token is None:
            return None
        return self.convert_tokens_to_ids(self.pad_token)

    @property
    def cls_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the classification token in the vocabulary,
        to extract a summary of an input sequence leveraging self-attention
        along the full depth of the model.
        Returns :obj:`None` if the token has not been set.
        """
        if self._cls_token is None:
            return None
        return self.convert_tokens_to_ids(self.cls_token)

    @property
    def mask_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the mask token in the vocabulary, used when training a
        model with masked-language modeling. Returns :obj:`None` if the token has not been set.
        """
        if self._mask_token is None:
            return None
        return self.convert_tokens_to_ids(self.mask_token)

    @property
    def eod_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the end of document token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        if self._eod_token is None:
            return None
        return self.convert_tokens_to_ids(self.eod_token)

    @property
    def start_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the start token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        start_token = self.start_token
        if start_token is None:
            return None
        else:
            return self.convert_tokens_to_ids(start_token)

    @property
    def end_token_id(self) -> Optional[int]:
        """
        :obj:`Optional[int]`: Id of the end token in the vocabulary.
        Returns :obj:`None` if the token has not been set.
        """
        end_token = self.end_token
        if end_token is None:
            return None
        else:
            return self.convert_tokens_to_ids(end_token)

    @property
    def additional_special_tokens_ids(self) -> List[int]:
        """
        :obj:`List[int]`: Ids of all the additional special tokens in the vocabulary.
        Log an error if used while not having been set.
        """
        return self.convert_tokens_to_ids(self.additional_special_tokens)

    @property
    def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]:
        """
        A dictionary mapping special token class attributes
        (:obj:`cls_token`, :obj:`unk_token`, etc.) to their values
        (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.).
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self) -> List[str]:
        """
        :obj:`List[str]`: All the special tokens
        (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.) mapped to class attributes.
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
            all_toks = all_toks + (
                list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]
            )
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self) -> List[int]:
        """
        :obj:`List[int]`: List the ids of the special tokens
        (:obj:`'<unk>'`, :obj:`'<cls>'`, etc.) mapped to class attributes.
        """
        all_toks = self.all_special_tokens
        all_ids = list(self.convert_tokens_to_ids(all_toks))
        return all_ids

    @staticmethod
    def clean_up_tokenization(out_string):
        """Clean up a list of simple English tokenization artifacts like spaces before
        punctuations and abbreviated forms.
        """
        out_string = (
            out_string.replace(" .", ".")
            .replace(" ?", "?")
            .replace(" !", "!")
            .replace(" ,", ",")
            .replace(" ' ", "'")
            .replace(" n't", "n't")
            .replace(" 'm", "'m")
            .replace(" do not", " don't")
            .replace(" 's", "'s")
            .replace(" 've", "'ve")
            .replace(" 're", "'re")
        )
        return out_string