graph_base.py 5.41 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import oneflow as flow
from oneflow import nn

from libai.layers import TransformerLayer
from libai.utils import distributed as dist

logger = logging.getLogger(__name__)


class GraphBase(nn.Graph):
    def __init__(
        self,
        model: nn.Module,
        optimizer: flow.optim.Optimizer = None,
        lr_scheduler: flow.optim.lr_scheduler = None,
        fp16=False,
        activation_checkpoint=False,
        grad_acc_steps=1,
        zero_optim=False,
        zero_stage=0,
        is_train=True,
        auto_parallel_conf=None,
    ):
        super().__init__()

        self.model = model
        self.is_train = is_train

        if is_train:
            self.add_optimizer(optimizer, lr_sch=lr_scheduler)
            if fp16:
                self.config.enable_amp(True)
                grad_scaler = flow.amp.GradScaler(
                    init_scale=65536.0 * dist.get_data_parallel_size(),
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=2000,
                )
                self.set_grad_scaler(grad_scaler)

            if grad_acc_steps > 1:
                self.config.set_gradient_accumulation_steps(grad_acc_steps)

            if activation_checkpoint:
                self.set_activation_checkpoint()

            if zero_optim:
                self.config.enable_zero(True, stage=zero_stage)

            self.set_pipeline_stage_id()

        self.config.allow_fuse_add_to_output(True)
        self.config.allow_fuse_model_update_ops(True)
        self.config.allow_fuse_cast_scale(True)

        # Enable cuda stream for computation and communication as the same stream.
        # This will reduce memory when using model parallelism.
        dist_util = dist.get_dist_util()
        if dist_util.is_tensor_model_parallel() or dist_util.is_pipeline_model_parallel():
            flow.boxing.nccl.enable_use_compute_stream(True)

        # auto_parallel
        if auto_parallel_conf is not None and auto_parallel_conf.enabled:
            try:
                self.config.enable_auto_parallel(True)
                self.config.enable_auto_parallel_ignore_user_sbp_config(
                    auto_parallel_conf.enable_auto_parallel_ignore_user_sbp_config
                )
                self.config.set_auto_parallel_computation_cost_ratio(0.05)
                self.config.set_auto_parallel_wait_time(1.65e4)
                self.config.enable_auto_parallel_trunk_algo(auto_parallel_conf.trunk_algo)
                self.config.enable_auto_parallel_sbp_collector(auto_parallel_conf.sbp_collector)
            except RuntimeWarning:
                import warnings

                warnings.warn(
                    "The version of oneflow don't support auto_parallel.\n"
                    "Please reinstall the oneflow nightly:\n"
                    "python3 -m pip install --pre oneflow -f https://staging.oneflow.info/branch/master/[PLATFORM]"  # noqa
                )

    def build(self, **kwargs):
        if self.is_train:
            logger.info(
                "Start compling the train graph which may take some time. "
                "Please wait for a moment ..."
            )
            loss_dict = self.model(**kwargs)
            losses = sum(v for k, v in loss_dict.items() if "loss" in k)
            losses.backward()
            return loss_dict
        else:
            logger.info(
                "Start compling the eval graph which may take some time. "
                "Please wait for a moment ..."
            )
            return self.model(**kwargs)

    def set_activation_checkpoint(self):
        if hasattr(self.model, "origin"):
            if hasattr(type(self.model.origin), "set_activation_checkpoint"):
                type(self.model.origin).set_activation_checkpoint(self.model)
            else:
                for module_block in self.model.modules():
                    if isinstance(module_block.origin, TransformerLayer):
                        module_block.config.activation_checkpointing = True
        else:
            if hasattr(type(self.model.to(nn.Module)), "set_activation_checkpoint"):
                type(self.model.to(nn.Module)).set_activation_checkpoint(self.model)
            else:
                for module_block in self.model.modules():
                    if isinstance(module_block.to(nn.Module), TransformerLayer):
                        module_block.to(nn.graph.GraphModule).activation_checkpointing = True

    def set_pipeline_stage_id(self):
        if hasattr(self.model, "origin"):
            if hasattr(type(self.model.origin), "set_pipeline_stage_id"):
                type(self.model.origin).set_pipeline_stage_id(self.model)
        else:
            if hasattr(type(self.model.to(nn.Module)), "set_pipeline_stage_id"):
                type(self.model.to(nn.Module)).set_pipeline_stage_id(self.model)