"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "f8924ad74b87410ad99407444f1d8792438fd2e2"
embedding.py 10.5 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import oneflow as flow
from oneflow import nn
from oneflow.nn import init

from libai.utils import distributed as dist


class Embedding(nn.Module):
    """Construct the trainable embedding module, which does not support parallelization.
    This can be used for positional embedding and token type embedding.

    Arguments:
        num_embeddings: size of vocabulary.
        embedding_dim: dimension of embeddings.
        padding_idx: pad index. Defaults to None.
        init_method: method to initialize weights. Defaults to ``flow.nn.init.xavier_normal_``.
        amp_enabled: fp16 option for embedding weight. Defaults to False.
    """

    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        padding_idx=None,
        init_method=init.xavier_normal_,
        amp_enabled=False,
        layer_idx=0,
    ):
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        if padding_idx is not None:
            if padding_idx > 0:
                assert (
                    padding_idx < self.num_embeddings
                ), "Padding_idx must be within num_embeddings"
            elif padding_idx < 0:
                assert (
                    padding_idx >= -self.num_embeddings
                ), "Padding_idx must be within num_embeddings"
                padding_idx = self.num_embeddings + padding_idx
        self.padding_idx = padding_idx
        self.init_method = init_method
        self.amp_enabled = amp_enabled

        assert num_embeddings > 0
        self.weight = nn.Parameter(
            flow.empty(
                (num_embeddings, embedding_dim),
                dtype=flow.float32,
                placement=dist.get_layer_placement(layer_idx),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            )
        )
        self.init_method(self.weight)
        # FIXME(lxy): Fill padding_idx is not supported in nd_sbp right now.
        # self._fill_padding_idx_with_zero()

    def forward(self, input_ids):
        weight = flow._C.amp_white_identity(self.weight) if self.amp_enabled else self.weight
        # embeddings with sbp sign: [B, B]
        #   [B, B] x [S(0), B] --> [S(0), B]
        #     ↑         ↑              ↑
        #   embed    pos_ids       pos_embed
        input_embeds = flow._C.gather(weight, input_ids, axis=0)
        return input_embeds

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with flow.no_grad():
                self.weight[self.padding_idx] = flow.zeros(
                    self.embedding_dim,
                    placement=dist.get_layer_placement(0),
                    sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
                )

    def extra_repr(self) -> str:
        s = "num_embeddings={num_embeddings}, embedding_dim={embedding_dim}"
        if self.padding_idx is not None:
            s += ", padding_idx={padding_idx}"
        return s.format(**self.__dict__)


class VocabEmbedding(nn.Module):
    """Construct the word embeddings, which may be split along vocabulary dimension.

    Arguments:
        num_embeddings: size of vocabulary.
        embedding_dim: dimension of embeddings.
        padding_idx: pad index. Defaults to None.
        init_method: method to initialize weights. Defaults to ``flow.nn.init.xavier_normal_``.
        amp_enabled: fp16 option for embedding weight. Defaults to False.
    """

    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        padding_idx=None,
        init_method=init.xavier_normal_,
        amp_enabled=False,
    ):
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        if padding_idx is not None:
            if padding_idx > 0:
                assert (
                    padding_idx < self.num_embeddings
                ), "Padding_idx must be within num_embeddings"
            elif padding_idx < 0:
                assert (
                    padding_idx >= -self.num_embeddings
                ), "Padding_idx must be within num_embeddings"
                padding_idx = self.num_embeddings + padding_idx
        self.padding_idx = padding_idx
        self.init_method = init_method
        self.amp_enabled = amp_enabled

        # Word token embedding shape with (vocab_size, hidden_size)
        # sbp: [B, S(0)]
        self.weight = nn.Parameter(
            flow.empty(
                (num_embeddings, embedding_dim),
                dtype=flow.float32,
                placement=dist.get_layer_placement(0),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(0)]),
            )
        )
        # Initialize the word embedding
        self.init_method(self.weight)
        # FIXME(Lxy): Fill padding_idx is not supported in nd_sbp right now.
        # self._fill_padding_idx_with_zero()

    def forward(self, input_ids):
        weight = flow._C.amp_white_identity(self.weight) if self.amp_enabled else self.weight
        # input_ids with shape (batch_size, seq_len), and sbp sign: [S(0), B]

        # Gather forward sbp sign
        # [B, S(0)] x [S(0), B] --> [S(0), P]
        #     ↑           ↑            ↑
        #   embed  input_ids    input_embeds
        input_embeds = flow._C.gather(weight, input_ids, axis=0)
        # Set the embeds sbp from [S(0), P] --> [S(0), B] to get complete embedding results.
        input_embeds = input_embeds.to_global(sbp=dist.get_hidden_sbp())

        return input_embeds

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with flow.no_grad():
                self.weight[self.padding_idx] = flow.zeros(
                    self.embedding_dim,
                    placement=dist.get_layer_placement(0),
                    sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
                )

    def extra_repr(self) -> str:
        s = "num_embeddings={num_embeddings}, embedding_dim={embedding_dim}"
        if self.padding_idx is not None:
            s += ", padding_idx={padding_idx}"
        return s.format(**self.__dict__)


class SinePositionalEmbedding(nn.Module):
    """Construct the sinusoidal positional embeddings.

    Arguments:
        num_embeddings: size of vocabulary.
        embedding_dim: dimension of embeddings.
    """

    def __init__(self, num_embeddings, embedding_dim):
        super().__init__()

        self.embedding_dim = embedding_dim
        self.num_embeddings = num_embeddings

        position_embedding = flow.zeros(
            num_embeddings,
            embedding_dim,
            dtype=flow.float32,
            placement=dist.get_layer_placement(0),
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
        )
        position = flow._C.global_arange(
            start=0,
            end=num_embeddings,
            placement=dist.get_layer_placement(0),
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            dtype=flow.float32,
        ).unsqueeze(1)
        position_range = flow._C.global_arange(
            start=0,
            end=embedding_dim,
            step=2,
            placement=dist.get_layer_placement(0),
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            dtype=flow.float32,
        )
        div_term = flow.exp(position_range * (-math.log(10000.0) / embedding_dim))

        position_embedding[:, 0::2] = flow.sin(position * div_term)
        position_embedding[:, 1::2] = flow.cos(position * div_term)
        self.register_buffer("position_embedding", position_embedding)

    def forward(self, position_ids):
        position_embeds = flow._C.gather(self.position_embedding, position_ids, axis=0)
        return position_embeds

    def extra_repr(self) -> str:
        s = "num_embeddings={num_embeddings}, embedding_dim={embedding_dim}"
        return s.format(**self.__dict__)


class PatchEmbedding(nn.Module):
    """2D Image to Patch Embedding

    Arguments:
        img_size: size of input image. Default to 224.
        patch_size: embedded patch size. Default to 16.
        in_chans: input channel's size. Default to 3.
        embed_dim: dimension of embedded patch. Default to 768.
        norm_layer: normalization patch embedding or not. Default to None.
        flatten: flatten patch embedding or keep the 2-D shape. Default to True.
        layer_idx: A layer_idx sign which determines the placement. It will be used in pipeline
        parallelism. Default to 0.
    """

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        norm_layer=None,
        flatten=True,
        *,
        layer_idx=0,
    ):
        super().__init__()
        img_size = img_size if isinstance(img_size, tuple) else (img_size, img_size)
        patch_size = patch_size if isinstance(patch_size, tuple) else (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten
        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        ).to_global(
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            placement=dist.get_layer_placement(layer_idx),
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert (
            H == self.img_size[0]
        ), f"Input image height ({H}) doesn't match model ({self.img_size[0]})."
        assert (
            W == self.img_size[1]
        ), f"Input image width ({W}) doesn't match model ({self.img_size[1]})."
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x