basic.py 6.84 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from abc import ABCMeta, abstractmethod
from typing import Any, Dict

import oneflow as flow

from libai.config import LazyConfig, try_get_key
from libai.engine import DefaultTrainer
from libai.utils import distributed as dist
from libai.utils.logger import setup_logger

logger = setup_logger(distributed_rank=dist.get_rank())
logger = logging.getLogger("libai.inference")


class BasePipeline(metaclass=ABCMeta):
    """
    Base class for all task pipeline
    """

    def __init__(
        self,
        config_file,
        data_parallel=None,
        tensor_parallel=None,
        pipeline_parallel=None,
        pipeline_stage_id=None,
        pipeline_num_layers=None,
        model_path=None,
        mode="libai",
        **kwargs,
    ):
        # init cfg
        self.cfg = LazyConfig.load(config_file)
        flow.boxing.nccl.set_fusion_threshold_mbytes(
            try_get_key(self.cfg, "train.nccl_fusion_threshold_mb", default=16)
        )
        flow.boxing.nccl.set_fusion_max_ops_num(
            try_get_key(self.cfg, "train.nccl_fusion_max_ops", default=24)
        )
        self.update_cfg(
            data_parallel,
            tensor_parallel,
            pipeline_parallel,
            pipeline_stage_id,
            pipeline_num_layers,
        )
        dist.setup_dist_util(self.cfg.train.dist)
        assert (
            self.cfg.train.dist.data_parallel_size == 1
        ), "not support data parallel yet, only support tensor and pipeline parallel"
        logger.info(self.cfg.train.dist)

        # initial and load model

        self.model = self.load_pretrain_weight(self.cfg.model, model_path, mode=mode)
        self.model._apply(dist.convert_to_distributed_default_setting)
        self.model = self.model.eval()

        # initial tokenizer
        if dist.is_main_process():
            self.tokenizer = self.build_tokenizer(self.cfg)
        else:
            self.tokenizer = None
        self.tokenizer = dist.broadcast_py_object(self.tokenizer, src=0)

        # set parameters
        (
            self._preprocess_params,
            self._forward_params,
            self._postprocess_params,
        ) = self._parse_parameters(**kwargs)

    def update_cfg(
        self,
        data_parallel=1,
        tensor_parallel=1,
        pipeline_parallel=1,
        pipeline_stage_id=None,
        pipeline_num_layers=None,
    ):
        self.cfg.train.dist.data_parallel_size = data_parallel
        self.cfg.train.dist.tensor_parallel_size = tensor_parallel
        self.cfg.train.dist.pipeline_parallel_size = pipeline_parallel
        self.cfg.train.dist.custom_pipeline_stage_id = pipeline_stage_id
        if pipeline_num_layers is not None:
            self.cfg.train.dist.pipeline_num_layers = pipeline_num_layers

        if self.cfg.train.dist.pipeline_parallel_size > 1:
            assert (
                try_get_key(self.cfg.train.dist, "pipeline_num_layers") is not None
            ), "cfg.train.dist.pipeline_num_layers must be set when run pipeline parallel"

    def load_pretrain_weight(
        self,
        libai_cfg_model,
        model_path,
        mode="libai",
    ):
        """load pretrained model.

        Args:
            libai_cfg_model (libai.models): Lazy config Model in Libai, you can import it
                by `from libai.config.configs.common.models.bert
                    import pretrain_model as libai_cfg_model`
            model_path (str): The directory path of pretrained model
            mode (str): set it to `libai` for loading trained model from libai,
                set it to `random` for quickly debugging by random initialized model
        """
        if mode == "libai":
            from libai.models.utils.model_utils.base_loader import ModelLoaderLiBai

            model_loader = ModelLoaderLiBai(libai_cfg_model, libai_cfg_model.cfg, model_path)
            model_loader.base_model_prefix_1 = None
            model_loader.base_model_prefix_2 = ""
            return model_loader.load()
        elif mode == "random":
            return DefaultTrainer.build_model(self.cfg)
        else:
            raise NotImplementedError

    def build_tokenizer(self, cfg):
        tokenizer = None
        if try_get_key(cfg, "tokenization") is not None:
            tokenizer = DefaultTrainer.build_tokenizer(cfg)
        return tokenizer

    @abstractmethod
    def _parse_parameters(self, **pipeline_parameters):
        raise NotImplementedError("_parse_parameters not implemented")

    def __call__(self, inputs, *args, batch_size=None, **kwargs) -> dict:

        preprocess_params, forward_params, postprocess_params = self._parse_parameters(
            **kwargs
        )  # noqa

        # Fuse __init__ params and __call__ params without modifying the __init__ ones.
        preprocess_params = {**self._preprocess_params, **preprocess_params}
        forward_params = {**self._forward_params, **forward_params}
        postprocess_params = {**self._postprocess_params, **postprocess_params}

        with flow.no_grad():
            model_inputs_dict = self.preprocess(inputs, **preprocess_params)
            model_outputs_dict = self.forward(model_inputs_dict, **forward_params)
            model_outputs_dict = self.to_local(model_outputs_dict)
            if dist.is_main_process():
                outputs_dict = self.postprocess(model_outputs_dict, **postprocess_params)
            else:
                outputs_dict = {}
            dist.synchronize()
        return outputs_dict

    def to_local(self, model_outputs_dict):
        for key, value in model_outputs_dict.items():
            if isinstance(value, flow.Tensor) and value.is_global:
                model_outputs_dict[key] = dist.ttol(
                    value, ranks=[0] if value.placement.ranks.ndim == 1 else [[0]]
                )
        if flow.cuda.is_available():
            dist.synchronize()
        return model_outputs_dict

    @abstractmethod
    def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> dict:
        raise NotImplementedError("preprocess not implemented")

    @abstractmethod
    def forward(self, **kwargs: Dict) -> dict:
        raise NotImplementedError("forward not implemented")

    @abstractmethod
    def postprocess(self, **kwargs: Dict) -> dict:
        raise NotImplementedError("postprocess not implemented")