cls_evaluator.py 2.71 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from collections import OrderedDict

from libai.utils import distributed as dist

from .evaluator import DatasetEvaluator


def accuracy(output, target, topk=(1,)):
    maxk = min(max(topk), output.size()[1])
    batch_size = target.size(0)
    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.reshape(1, -1).expand_as(pred))
    return [
        (correct[: min(k, maxk)].reshape(-1).float().sum(0) * 100.0 / batch_size).item()
        for k in topk
    ]


class ClsEvaluator(DatasetEvaluator):
    """
    Evaluate accuracy for classification.
    The metrics range from 0 to 100 (instead of 0 to 1).
    We support evaluate different topk accuracy.
    You can reset `cfg.train.topk=(1, 5, N)` according to your needs.
    """

    def __init__(self, topk=(1, 5)):
        self.topk = topk
        self._predictions = []

    def reset(self):
        self._predictions = []

    def process(self, inputs, outputs):
        pred_logits = outputs["prediction_scores"]
        labels = inputs["labels"]

        # measure accuracy
        topk_acc = accuracy(pred_logits, labels, topk=self.topk)
        num_correct_acc_topk = [acc * labels.size(0) / 100 for acc in topk_acc]

        self._predictions.append(
            {"num_correct_topk": num_correct_acc_topk, "num_samples": labels.size(0)}
        )

    def evaluate(self):
        if not dist.is_main_process():
            return {}
        else:
            predictions = self._predictions

        total_correct_num = OrderedDict()
        for top_k in self.topk:
            total_correct_num["Acc@" + str(top_k)] = 0

        total_samples = 0
        for prediction in predictions:
            for top_k, num_correct_n in zip(self.topk, prediction["num_correct_topk"]):
                total_correct_num["Acc@" + str(top_k)] += int(num_correct_n)

            total_samples += int(prediction["num_samples"])

        self._results = OrderedDict()
        for top_k, topk_correct_num in total_correct_num.items():
            self._results[top_k] = topk_correct_num / total_samples * 100

        return copy.deepcopy(self._results)