hooks.py 14.8 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datetime
import logging
import math
import operator
import time
from collections import Counter

import oneflow as flow

from libai.evaluation import flatten_results_dict
from libai.utils import distributed as dist
from libai.utils.checkpoint import Checkpointer
from libai.utils.checkpoint import PeriodicCheckpointer as _PeriodicCheckpointer
from libai.utils.events import EventWriter
from libai.utils.timer import Timer

from .trainer import HookBase

# --------------------------------------------------------
# References:
# https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/hooks.py
# --------------------------------------------------------

"""
Implement some common hooks.
"""
logger = logging.getLogger(__name__)


class CallbackHook(HookBase):
    """
    Create a hook using callback functions provided by the user.
    """

    def __init__(self, *, before_train=None, after_train=None, before_step=None, after_step=None):
        """
        Each argument is a function that takes one argument: the trainer.
        """
        self._before_train = before_train
        self._before_step = before_step
        self._after_step = after_step
        self._after_train = after_train

    def before_train(self):
        if self._before_train:
            self._before_train(self.trainer)

    def after_train(self):
        if self._after_train:
            self._after_train(self.trainer)
        # The functions may be closures that hold reference to the trainer
        # Therefore, delete them to avoid circular reference.
        del self._before_train, self._after_train
        del self._before_step, self._after_step

    def before_step(self):
        if self._before_step:
            self._before_step(self.trainer)

    def after_step(self):
        if self._after_step:
            self._after_step(self.trainer)


class IterationTimer(HookBase):
    """
    Track the time spent for each iteration (each run_step call in the trainer).
    Print a summary in the end of training.
    This hook uses the time between the call to its :meth:`before_step`
    and :meth:`after_step` methods.
    Under the convention that :meth:`before_step` of all hooks should only
    take negligible amount of time, the :class:`IterationTimer` hook should be
    placed at the beginning of the list of hooks to obtain accurate timing.
    """

    def __init__(self, warmup_iter=3):
        """
        Args:
            warmup_iter (int): the number of iterations at the beginning to exclude
                from timing.
        """
        self._warmup_iter = warmup_iter
        self._step_timer = Timer()

    def before_train(self):
        self._start_time = time.perf_counter()
        self._total_timer = Timer()
        self._total_timer.pause()

    def after_train(self):
        total_time = time.perf_counter() - self._start_time
        total_time_minus_hooks = self._total_timer.seconds()
        hook_time = total_time - total_time_minus_hooks

        num_iter = self.trainer.iter + 1 - self.trainer.start_iter - self._warmup_iter

        if num_iter > 0 and total_time_minus_hooks > 0:
            # Speed is meaningful only after warmup
            # NOTE this format is parsed by grep in some scripts
            logger.info(
                "Overall training speed: {} iterations in {} ({:.4f} s / it)".format(
                    num_iter,
                    str(datetime.timedelta(seconds=int(total_time_minus_hooks))),
                    total_time_minus_hooks / num_iter,
                )
            )

        logger.info(
            "Total training time: {} ({} on hooks)".format(
                str(datetime.timedelta(seconds=int(total_time))),
                str(datetime.timedelta(seconds=int(hook_time))),
            )
        )

    def before_step(self):
        self._step_timer.reset()
        self._total_timer.resume()

    def after_step(self):
        # +1 because we're in after_step
        iter_done = self.trainer.iter - self.trainer.start_iter + 1
        if iter_done >= self._warmup_iter:
            sec = self._step_timer.seconds()
            self.trainer.storage.put_scalars(time=sec)
        else:
            self._start_time = time.perf_counter()
            self._total_timer.reset()

        self._total_timer.pause()


class PeriodicWriter(HookBase):
    """
    Write events to EventStorage periodically.
    It is executed every ``period`` iterations and after the last iteration.
    """

    def __init__(self, writers, period=20):
        """
        Args:
            writers (list[EventWriter]): a list of EventWriter objects
            period (int):
        """
        self._writers = writers
        for w in writers:
            assert isinstance(w, EventWriter), w
        self._period = period

    def after_step(self):
        if (self.trainer.iter + 1) % self._period == 0 or (
            self.trainer.iter == self.trainer.max_iter - 1
        ):
            for writer in self._writers:
                writer.write()

    def after_train(self):
        for writer in self._writers:
            writer.close()


class PeriodicCheckpointer(_PeriodicCheckpointer, HookBase):
    """
    Same as :class:`libai.utils.checkpoint.PeriodicCheckpointer`, but as a hook.
    Note that when used as a hook,
    it is unable to save additional data other than what's defined
    by the given `checkpointer`.
    It is executed every ``period`` iterations and after the last iteration.
    """

    def before_train(self):
        self.max_iter = self.trainer.max_iter

    def after_step(self):
        self.step(self.trainer.iter)


class BestCheckpointer(HookBase):
    """
    Checkpoints best weights based off given metric.
    This hook should be used in conjunction to and executed after the hook
    that produces the metric, e.g. `EvalHook`.
    """

    def __init__(
        self,
        eval_period: int,
        checkpointer: Checkpointer,
        val_metric: str,
        mode: str = "max",
        file_prefix: str = "model_best",
    ) -> None:
        """
        Args:
            eval_period (int): the period `EvalHook` is set to run.
            checkpointer: the checkpointer object used to save checkpoints.
            val_metric (str): validation metric to track for best checkpoint, e.g. "acc@1"
            mode (str): one of {'max', 'min'}. controls whether the chosen val metric should be
                maximized or minimized, e.g. for "acc@1" it should be "max"
            file_prefix (str): the prefix of checkpoint's filename, defaults to "model_best"
        """
        self._period = eval_period
        self._val_metric = val_metric
        assert mode in [
            "max",
            "min",
        ], f'Mode "{mode}" to `BestCheckpointer` is unknown. It should be one of {"max", "min"}.'
        if mode == "max":
            self._compare = operator.gt
        else:
            self._compare = operator.lt
        self._checkpointer = checkpointer
        self._file_prefix = file_prefix
        self.best_metric = None
        self.best_iter = None

    def _update_best(self, val, iteration):
        if math.isnan(val) or math.isinf(val):
            return False
        self.best_metric = val
        self.best_iter = iteration
        return True

    def _best_checking(self):
        metric_tuple = self.trainer.storage.latest().get(self._val_metric)
        flag = flow.zeros(1)
        if dist.is_main_process():
            if metric_tuple is None:
                logger.warning(
                    f"Given val metric {self._val_metric} does not seem to be computed/stored. "
                    "Will not be checkpointed based on that."
                )
            else:
                latest_metric, metric_iter = metric_tuple

                if self.best_metric is None:
                    if self._update_best(latest_metric, metric_iter):
                        flag = flag + 1
                        logger.info(
                            f"Saved first model at {self.best_metric:0.5f} @ {self.best_iter} steps"
                        )
                elif self._compare(latest_metric, self.best_metric):
                    flag = flag + 1
                    logger.info(
                        f"Saved best model as latest eval score for {self._val_metric} is "
                        f"{latest_metric:0.5f}, better than last best score "
                        f"{self.best_metric:0.5f} @ iteration {self.best_iter}."
                    )
                    self._update_best(latest_metric, metric_iter)
                else:
                    logger.info(
                        f"Not saving as latest eval score for "
                        f"{self._val_metric} is {latest_metric:0.5f}, "
                        f"not better than best score {self.best_metric:0.5f} "
                        f"@ iteration {self.best_iter}."
                    )

        dist.synchronize()
        flag = flag.to_global(
            sbp=flow.sbp.broadcast, placement=flow.env.all_device_placement("cpu")
        )
        if flag.to_local().item() == 1:
            self._checkpointer.save(f"{self._file_prefix}")

    def after_step(self):
        # same conditions as `EvalHook`
        next_iter = self.trainer.iter + 1
        if (
            self._period > 0
            and next_iter % self._period == 0
            and next_iter != self.trainer.max_iter
        ):
            self._best_checking()

    def after_train(self):
        # same conditions as `EvalHook`
        if self.trainer.iter + 1 >= self.trainer.max_iter:
            self._best_checking()


class EvalHook(HookBase):
    """
    Run an evaluation function periodically, and at the end of training.
    It is executed every ``eval_period`` iterations and after the last iteration.
    """

    def __init__(self, eval_period, eval_function):
        """
        Args:
            eval_period (int): the period to run `eval_function`.
            eval_function (callable): a function which takes no arguments, and
                returns a nested dict of evaluation metrics.
        Note:
            This hook must be enabled in all or none workers.
            If you would like only certain workers to perform evaluation,
            give other workers a no-op function (`eval_function=lambda: None`).
        """
        self._period = eval_period
        self._func = eval_function

    def _do_eval(self):

        results = self._func()

        if results:
            assert isinstance(
                results, dict
            ), "Eval function must return a dict. Got {} instead.".format(results)

            flattened_results = flatten_results_dict(results)
            # fixme: flatten_results_dict is not defined
            for k, v in flattened_results.items():
                try:
                    v = float(v)
                except Exception:
                    raise ValueError(
                        "[EvalHook] eval_function should return a nested dict of float. "
                        "Got '{}: {}' instead.".format(k, v)
                    )
            self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False)

        # Evaluation may take different time among workers.
        # A barrier make them start the next iteration together.
        dist.synchronize()

    def after_step(self):
        next_iter = self.trainer.iter + 1
        if self._period > 0 and next_iter % self._period == 0:
            # do the last eval in after_train
            if next_iter != self.trainer.max_iter:
                self._do_eval()

    def after_train(self):
        # This condition is to prevent the eval from running after a failed training
        if self.trainer.iter + 1 >= self.trainer.max_iter:
            self._do_eval()
        # func is likely a closure that holds reference to the trainer
        # therefore we clean it to avoid circular reference in the end
        del self._func


class LRScheduler(HookBase):
    """
    A hook which executes a oneflow builtin LR scheduler and summarizes the LR.
    It is executed after every iteration.
    """

    def __init__(self, optimizer=None, scheduler=None):
        """
        Args:
            optimizer (flow.optim.Optimizer):
            scheduler (flow.optim.LRScheduler):
                if a :class:`ParamScheduler` object, it defines the multiplier over the base LR
                in the optimizer.
        If any argument is not given, will try to obtain it from the trainer.
        """
        self._optimizer = optimizer
        self._scheduler = scheduler

    def before_train(self):
        self._optimizer = self._optimizer or self.trainer.optimizer
        self._best_param_group_id = LRScheduler.get_best_param_group_id(self._optimizer)

    @staticmethod
    def get_best_param_group_id(optimizer):
        # NOTE: some heuristics on what LR to summarize
        # summarize the param group with most parameters
        largest_group = max(len(g["params"]) for g in optimizer.state_dict()["param_groups"])

        if largest_group == 1:
            # If all groups have one parameter,
            # then find the most common initial LR, and use it for summary
            lr_count = Counter(
                [g["_options"]["lr"] for g in optimizer.state_dict()["param_groups"]]
            )
            lr = lr_count.most_common()[0][0]
            for i, g in enumerate(optimizer.state_dict()["param_groups"]):
                if g["_options"]["lr"] == lr:
                    return i
        else:
            for i, g in enumerate(optimizer.state_dict()["param_groups"]):
                if len(g["params"]) == largest_group:
                    return i

    def after_step(self):
        lr = self.scheduler.get_last_lr()[self._best_param_group_id]
        self.trainer.storage.put_scalar("lr", lr, smoothing_hint=False)
        self.scheduler.step()

    @property
    def scheduler(self):
        return self._scheduler or self.trainer.lr_scheduler

    def state_dict(self):
        if isinstance(self.scheduler, flow.optim.lr_scheduler._LRScheduler):
            return self.scheduler.state_dict()
        return {}

    def load_state_dict(self, state_dict):
        if isinstance(self.scheduler, flow.optim.lr_scheduler._LRScheduler):
            logger.info("Loading scheduler from state_dict ...")
            self.scheduler.load_state_dict(state_dict)