roberta_dataset.py 7.02 KB
Newer Older
yuguo960516's avatar
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Roberta Style dataset."""

import numpy as np
import oneflow as flow

from libai.data.structures import DistTensorData, Instance

from ..data_utils import create_masked_lm_predictions, get_samples_mapping
from .bert_dataset import pad_and_convert_to_numpy


class RobertaDataset(flow.utils.data.Dataset):
    """Dataset containing sentence for RoBERTa training.
    Each index corresponds to a randomly selected sentence.

    Args:
        name: Name of dataset for clarification.
        tokenizer: Tokenizer to use.
        data_prefix: Path to the training dataset.
        indexed_dataset: Indexed dataset to use.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length. Defaults to 512.
        mask_lm_prob: Probability to mask tokens. Defaults to 0.15.
        short_seq_prob: Probability of producing a short sequence. Defaults to 0.0.
        max_predictions_per_seq: Maximum number of mask tokens in each sentence. Defaults to None.
        seed: Seed for random number generator for reproducibility. Defaults to 1234.
    """

    def __init__(
        self,
        name,
        tokenizer,
        indexed_dataset,
        data_prefix,
        max_num_samples,
        mask_lm_prob,
        max_seq_length,
        short_seq_prob=0.0,
        seed=1234,
        masking_style="bert",
    ):
        super().__init__()

        # Params to store.
        self.name = name
        self.seed = seed
        self.masked_lm_prob = mask_lm_prob
        self.max_seq_length = max_seq_length
        self.masking_style = masking_style

        # Dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
        self.samples_mapping = get_samples_mapping(
            self.indexed_dataset,
            data_prefix,
            None,
            max_num_samples,
            self.max_seq_length - 2,  # account for added tokens
            short_seq_prob,
            self.seed,
            self.name,
            binary_head=False,
        )

        # Vocab stuff.
        self.tokenizer = tokenizer
        self.vocab_id_list = list(tokenizer.get_vocab().values())
        self.vocab_id_to_token_dict = {v: k for k, v in tokenizer.get_vocab().items()}

        self.cls_id = tokenizer.cls_token_id
        self.sep_id = tokenizer.sep_token_id
        self.mask_id = tokenizer.mask_token_id
        self.pad_id = tokenizer.pad_token_id

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        # We % 2**32 since numpy requires the seed to be between 0 and 2**32 - 1

        np_rng = np.random.RandomState(seed=((self.seed + idx) % 2 ** 32))
        return build_training_sample(
            self.tokenizer,
            sample,
            seq_length,
            self.max_seq_length,  # needed for padding
            self.vocab_id_list,
            self.vocab_id_to_token_dict,
            self.cls_id,
            self.sep_id,
            self.mask_id,
            self.pad_id,
            self.masked_lm_prob,
            np_rng,
            masking_style=self.masking_style,
        )


def build_training_sample(
    tokenizer,
    sample,
    target_seq_length,
    max_seq_length,
    vocab_id_list,
    vocab_id_to_token_dict,
    cls_id,
    sep_id,
    mask_id,
    pad_id,
    masked_lm_prob,
    np_rng,
    masking_style="bert",
):
    """Build training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
              the upper bound whereas the numpy one is exclusive.
    """
    assert target_seq_length <= max_seq_length

    tokens = []
    for j in range(len(sample)):
        tokens.extend(sample[j])

    max_num_tokens = target_seq_length
    truncate_segments(tokens, len(tokens), max_num_tokens, np_rng)

    # create tokens and tokentypes
    tokens, tokentypes = create_tokens_and_tokentypes(tokens, cls_id, sep_id)

    # Masking
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _, _) = create_masked_lm_predictions(
        tokenizer,
        tokens,
        vocab_id_list,
        vocab_id_to_token_dict,
        masked_lm_prob,
        cls_id,
        sep_id,
        mask_id,
        max_predictions_per_seq,
        np_rng,
        masking_style=masking_style,
    )

    # Padding.
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np = pad_and_convert_to_numpy(
        tokens, tokentypes, masked_positions, masked_labels, pad_id, max_seq_length
    )

    train_sample = Instance(
        input_ids=DistTensorData(flow.tensor(tokens_np)),
        attention_mask=DistTensorData(flow.tensor(padding_mask_np)),
        tokentype_ids=DistTensorData(flow.tensor(tokentypes_np)),
        lm_labels=DistTensorData(flow.tensor(labels_np), placement_idx=-1),
        loss_mask=DistTensorData(flow.tensor(loss_mask_np), placement_idx=-1),
    )

    return train_sample


def truncate_segments(tokens, len_tokens, max_num_tokens, np_rng):
    """Truncates a sequences to a maximum sequence length."""
    assert len_tokens > 0
    if len_tokens <= max_num_tokens:
        return False
    while len_tokens > max_num_tokens:
        if np_rng.random() < 0.5:
            del tokens[0]
        else:
            tokens.pop()
        len_tokens -= 1
    return True


def create_tokens_and_tokentypes(tokens, cls_id, sep_id):
    """Add [CLS] and [SEP] and build tokentypes."""
    # [CLS].
    tokens.insert(0, cls_id)
    # [SPE].
    tokens.append(sep_id)
    tokentypes = [0] * len(tokens)

    return tokens, tokentypes