README.md 4.89 KB
Newer Older
xiabo's avatar
xiabo committed
1
# Baichuan
xiabo's avatar
xiabo committed
2
## 论文
xiabo's avatar
xiabo committed
3
4


xiabo's avatar
xiabo committed
5

xiabo's avatar
xiabo committed
6
## 模型结构
xiabo's avatar
xiabo committed
7
Baichuan系列模型是由百川智能开发的开源大规模预训练模型,包含7B和13B等规模。其中,Baichuan-7B在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。
xiabo's avatar
xiabo committed
8
9
10
11
12
13

模型具体参数:

| 模型名称 | 隐含层维度 | 层数 | 头数 | 词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长 |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | RoPE | 4096 |
xiabo's avatar
xiabo committed
14

xiabo's avatar
xiabo committed
15

xiabo's avatar
xiabo committed
16
![img](./docs/baichuan.jpg)
xiabo's avatar
xiabo committed
17
18

## 算法原理
xiabo's avatar
xiabo committed
19
Baichuan整体模型基于标准的Transformer结构,采用了和LLaMA一样的模型设计。其中,Baichuan-7B在结构上采用Rotary Embedding位置编码方案、SwiGLU激活函数、基于RMSNorm的Pre-Normalization。
xiabo's avatar
xiabo committed
20
![img](./docs/baichuan.png)
xiabo's avatar
xiabo committed
21
22
23
24


## 环境配置

xiabo's avatar
xiabo committed
25
提供光源拉取推理的docker镜像:
xuxzh1's avatar
xuxzh1 committed
26
27
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10(推荐)
xiabo's avatar
xiabo committed
28
29
30
31
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:lmdeploy0.0.13_dtk23.04_torch1.13_py38
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
xiabo's avatar
xiabo committed
32
docker run -it --name baichuan --shm-size=1024G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v <Host Path>:<Container Path> <Image ID> /bin/bash
xiabo's avatar
xiabo committed
33
34
```
镜像版本依赖:
xuxzh1's avatar
xuxzh1 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
* DTK驱动:24.04.1
* Pytorch: 2.1.0
* python: python3.10

> [!NOTE]
>
> 使用lmdeploy0.0.13_dtk23.04_torch1.13_py38如果遇到 importError:libgemm multiB int4.so: cannot open shared obiect file: No such file or directory
>
> 解决方法:
>
> ```bash
> rm /usr/local/lib/python3.8/site-packages/_turbomind.cpython-38-x86_64-linux-gnu.so
> ```


xiabo's avatar
xiabo committed
50
51
52
53

## 数据集


xiabo's avatar
xiabo committed
54
55
## 推理

xiabo's avatar
xiabo committed
56
### 源码编译安装
xuxzh1's avatar
xuxzh1 committed
57
```bash
xiabo's avatar
xiabo committed
58
# 若使用光源的镜像,可以跳过源码编译安装,镜像里面安装好了lmdeploy。
xuxzh1's avatar
update  
xuxzh1 committed
59
git clone http://developer.hpccube.com/codes/modelzoo/baichuan_lmdeploy.git
xiabo's avatar
xiabo committed
60
61
cd llama_lmdeploy
git submodule init && git submodule update
xiabo's avatar
xiabo committed
62
cd lmdeploy
xiabo's avatar
xiabo committed
63
64
65
66
67
68
69
70
mkdir build && cd build
sh ../generate.sh
make -j 32
make install
cd .. && python3 setup.py install
```
### 模型下载

xiabo's avatar
xiabo committed
71
[baichuan-7b](https://huggingface.co/baichuan-inc/Baichuan-7B)
xiabo's avatar
xiabo committed
72

xiabo's avatar
xiabo committed
73
[baichuan2-7b-chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
xiabo's avatar
xiabo committed
74

xuxzh1's avatar
update  
xuxzh1 committed
75
76
77
78
79
80
81
82
83
84
### 运行前

```bash
#step 1
cd lmdeploy
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
#step 2
source /opt/dtk/cuda/env.sh
```

xiabo's avatar
xiabo committed
85

xiabo's avatar
xiabo committed
86
### 运行 baichuan-7b-chat
xuxzh1's avatar
xuxzh1 committed
87
```bash
xiabo's avatar
xiabo committed
88
# <model_name> 模型的名字 ('llama', 'internlm', 'vicuna', 'internlm-chat-7b', 'internlm-chat', 'internlm-chat-7b-8k', 'internlm-chat-20b', 'internlm-20b', 'baichuan-7b', 'baichuan2-7b', 'llama2', 'qwen-7b', 'qwen-14b')
xiabo's avatar
xiabo committed
89
# <tokenizer_path> tokenizer模型的路径(默认None,会去model_path里面找tokenizer.model)
xiabo's avatar
xiabo committed
90
91
92
# <tp> 用于张量并行的GPU数量应该是2^n

# bash界面运行
xuxzh1's avatar
update  
xuxzh1 committed
93
lmdeploy chat turbomind  ./workspace_baichuan7b --tp 1     # 输入问题后执行2次回车进行推理
xiabo's avatar
xiabo committed
94
95
96
97
98

# 服务器网页端运行

在bash端运行:
# <model_path_or_server> 部署模型的路径或tritonserver URL或restful api URL。前者用于与gradio直接运行服务。后者用于默认情况下使用tritonserver运行。如果输入URL是restful api。请启用另一个标志“restful_api”。
xuxzh1's avatar
update  
xuxzh1 committed
99
100
# <server-name> gradio服务器的ip地址
# <server-port> gradio服务器的ip的端口
xiabo's avatar
xiabo committed
101
102
103
104
# <batch_size> 于直接运行Turbomind的batch大小 (默认32)
# <tp> 用于张量并行的GPU数量应该是2^n (和模型转换的时候保持一致)
# <restful_api> modelpath_or_server的标志(默认是False)

xuxzh1's avatar
update  
xuxzh1 committed
105
lmdeploy serve gradio  ./workspace_baichuan7b --server-name {ip} --server-port {port} --batch_size 32 --tp 1 --restful_api False 
xiabo's avatar
xiabo committed
106

xuxzh1's avatar
xuxzh1 committed
107
在网页上输入{ip}:{port}即可进行对话
xiabo's avatar
xiabo committed
108
109
```

xiabo's avatar
xiabo committed
110
### 运行 baichuan2-7b
xuxzh1's avatar
xuxzh1 committed
111
```bash
xiabo's avatar
xiabo committed
112
# bash界面运行
xuxzh1's avatar
update  
xuxzh1 committed
113
lmdeploy chat turbomind ./workspace_baichuan2-7b --tp 1
xiabo's avatar
xiabo committed
114
115
116
117

# 服务器网页端运行

在bash端运行:
xuxzh1's avatar
update  
xuxzh1 committed
118
lmdeploy serve gradio ./workspace_baichuan2-7b --server-name {ip} --server-port {port} --batch_size 32 --tp 1 --restful_api False 
xiabo's avatar
xiabo committed
119

xuxzh1's avatar
xuxzh1 committed
120
在网页上输入{ip}:{port}即可进行对话
xiabo's avatar
xiabo committed
121
122
123
```

## result
xiabo's avatar
xiabo committed
124
![baichuan](docs/baichuan.gif)
xiabo's avatar
xiabo committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138

### 精度



## 应用场景

### 算法类别

`对话问答`


### 热点应用行业

xiabo's avatar
xiabo committed
139
`医疗,教育,科研,金融`
xiabo's avatar
xiabo committed
140

chenzk's avatar
chenzk committed
141
142
## 预训练权重
预训练权重快速下载中心:[SCNet AIModels](http://113.200.138.88:18080/aimodels) ,项目中的预训练权重可从快速下载通道下载:
dcuai's avatar
dcuai committed
143
[Baichuan-7B](http://113.200.138.88:18080/aimodels/Baichuan-7B)[Baichuan2-7B-Chat](http://113.200.138.88:18080/aimodels/Baichuan2-7B-Chat)
xiabo's avatar
xiabo committed
144
145

## 源码仓库及问题反馈
xiabo's avatar
xiabo committed
146
https://developer.hpccube.com/codes/modelzoo/baichuan_lmdeploy
xiabo's avatar
xiabo committed
147
148
149

## 参考资料
https://github.com/InternLM/LMDeploy