fine-tune.py 4.92 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import math
import pathlib
from typing import Optional, Dict
from dataclasses import dataclass, field
import json

import torch
from torch.utils.data import Dataset
import transformers
from transformers.training_args import TrainingArguments


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="baichuan-inc/Baichuan2-7B-Base")


@dataclass
class DataArguments:
    data_path: str = field(
        default=None, metadata={"help": "Path to the training data."}
    )


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    use_lora: bool = field(default=False)


class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(
        self,
        data_path,
        tokenizer,
        model_max_length,
        user_tokens=[195],
        assistant_tokens=[196],
    ):
        super(SupervisedDataset, self).__init__()
        self.data = json.load(open(data_path))
        self.tokenizer = tokenizer
        self.model_max_length = model_max_length
        self.user_tokens = user_tokens
        self.assistant_tokens = assistant_tokens
        self.ignore_index = -100
        item = self.preprocessing(self.data[0])
        print("input:", self.tokenizer.decode(item["input_ids"]))
        labels = []
        for id_ in item["labels"]:
            if id_ == -100:
                continue

            labels.append(id_)
        print("label:", self.tokenizer.decode(labels))

    def __len__(self):
        return len(self.data)

    def preprocessing(self, example):
        input_ids = []
        labels = []

        for message in example["conversations"]:
            from_ = message["from"]
            value = message["value"]
            value_ids = self.tokenizer.encode(value)

            if from_ == "human":
                input_ids += self.user_tokens + value_ids
                labels += [self.tokenizer.eos_token_id] + [self.ignore_index] * len(
                    value_ids
                )
                # print("human_input_ids",input_ids)
                # print("human_input_ids",labels)
            else:
                input_ids += self.assistant_tokens + value_ids
                labels += [self.ignore_index] + value_ids
                # print("gpt_input_ids",input_ids)
                # print("gpt_labels",labels)
        input_ids.append(self.tokenizer.eos_token_id)
        labels.append(self.tokenizer.eos_token_id)
        # print("input_ids!!!!",input_ids)
        # print("labels!!!",labels)
        input_ids = input_ids[: self.model_max_length]
        labels = labels[: self.model_max_length]
        input_ids += [self.tokenizer.pad_token_id] * (
            self.model_max_length - len(input_ids)
        )
        labels += [self.ignore_index] * (self.model_max_length - len(labels))
        input_ids = torch.LongTensor(input_ids)
        labels = torch.LongTensor(labels)
        attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
        return {
            "input_ids": input_ids,
            "labels": labels,
            "attention_mask": attention_mask,
        }

    def __getitem__(self, idx) -> Dict[str, torch.Tensor]:
        return self.preprocessing(self.data[idx])


def train():
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        trust_remote_code=True,
        cache_dir=training_args.cache_dir,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        use_fast=False,
        trust_remote_code=True,
        model_max_length=training_args.model_max_length,
        cache_dir=training_args.cache_dir,
    )
    if training_args.use_lora:
        from peft import LoraConfig, TaskType, get_peft_model

        peft_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM,
            target_modules=["W_pack"],
            inference_mode=False,
            r=1,
            lora_alpha=32,
            lora_dropout=0.1,
        )
        model.enable_input_require_grads()
        model = get_peft_model(model, peft_config)
        model.print_trainable_parameters()

    dataset = SupervisedDataset(
        data_args.data_path, tokenizer, training_args.model_max_length
    )
    trainer = transformers.Trainer(
        model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer
    )
    trainer.train()
    trainer.save_state()
    trainer.save_model(output_dir=training_args.output_dir)


if __name__ == "__main__":
    train()