trainer.py 10.8 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import math
import torch
from tqdm import tqdm
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple

from transformers import TrainerState, TrainerControl

from trl import PPOTrainer
from trl.core import LengthSampler, PPODecorators, logprobs_from_logits

from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.tuner.core.trainer import PeftTrainer
from llmtuner.tuner.ppo.utils import cast_layernorm_dtype, replace_model

if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments
    from trl import AutoModelForCausalLMWithValueHead
    from llmtuner.extras.callbacks import LogCallback
    from llmtuner.hparams import FinetuningArguments, GeneratingArguments


logger = get_logger(__name__)


class PPOPeftTrainer(PPOTrainer, PeftTrainer):
    r"""
    Inherits PPOTrainer.
    """

    def __init__(
        self,
        training_args: "Seq2SeqTrainingArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
        callbacks: List["LogCallback"],
        compute_dtype: torch.dtype,
        **kwargs
    ):
        PPOTrainer.__init__(self, **kwargs)
        self.args = training_args
        self.finetuning_args = finetuning_args
        self.generating_args = generating_args
        self.log_callback = callbacks[0]
        self.compute_dtype = compute_dtype
        self.state = TrainerState()
        self.control = TrainerControl()

    def ppo_train(self, max_target_length: int) -> None:
        r"""
        Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
        """
        total_train_batch_size = (
            self.args.per_device_train_batch_size * self.args.gradient_accumulation_steps * self.args.world_size
        )
        len_dataloader = len(self.dataloader)
        num_examples = len(self.dataset)
        num_train_epochs = self.args.num_train_epochs
        max_steps = math.ceil(num_train_epochs * len_dataloader)

        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()

        if self.is_world_process_zero():
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {num_examples}")
            logger.info(f"  Num Epochs = {num_train_epochs}")
            logger.info(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
            logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
            logger.info(f"  Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
            logger.info(f"  Total optimization steps = {max_steps}")
            logger.info(f"  Number of trainable parameters = {count_parameters(self.model)[0]}")

        # Keyword arguments for `model.generate`
        gen_kwargs = self.generating_args.to_dict()
        gen_kwargs["eos_token_id"] = list(set([self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids))
        gen_kwargs["pad_token_id"] = self.tokenizer.pad_token_id
        gen_kwargs["logits_processor"] = get_logits_processor()

        length_sampler = LengthSampler(max_target_length // 2, max_target_length)
        unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)

        dataiter = iter(self.dataloader)
        steps_trained = 0
        loss_meter = AverageMeter()
        reward_meter = AverageMeter()
        self.log_callback.on_train_begin(self.args, self.state, self.control)

        for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
            batch = next(dataiter)
            steps_trained += 1

            # Cast to inference mode
            unwrapped_model.gradient_checkpointing_disable()
            unwrapped_model.config.use_cache = True

            # Get inputs
            queries, responses = self.get_inputs(batch, length_sampler, **gen_kwargs)
            rewards = self.get_rewards(queries, responses, unwrapped_model)

            # Cast to training mode
            unwrapped_model.gradient_checkpointing_enable()
            unwrapped_model.config.use_cache = False

            # Run PPO step
            stats = self.step(queries, responses, rewards)
            loss_meter.update(stats["ppo/loss/total"], n=len(rewards))
            reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))

            self.state.global_step += 1
            self.log_callback.on_step_end(self.args, self.state, self.control)

            if self.is_local_process_zero() and (step+1) % self.args.logging_steps == 0:
                logs = dict(
                    loss=round(loss_meter.avg, 4),
                    reward=round(reward_meter.avg, 4),
                    learning_rate=stats["ppo/learning_rate"],
                    epoch=round(step / len_dataloader, 2)
                )
                tqdm.write(str(logs))
                logs["step"] = step
                self.state.log_history.append(logs)
                self.log_callback.on_log(self.args, self.state, self.control)
                loss_meter.reset()
                reward_meter.reset()

            if (step+1) % self.args.save_steps == 0: # save checkpoint
                self.save_model(os.path.join(self.args.output_dir, f"checkpoint-{step+1}"))

            if self.control.should_epoch_stop or self.control.should_training_stop:
                break

            if steps_trained == len_dataloader:
                dataiter = iter(self.dataloader)
                steps_trained = 0

        self.log_callback.on_train_end(self.args, self.state, self.control)

    @torch.no_grad()
    def get_inputs(
        self,
        batch: Dict[str, torch.Tensor],
        length_sampler: Optional[Callable] = None,
        **generation_kwargs
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        r"""
        Generates model's responses given queries.
        """
        if length_sampler is not None:
            generation_kwargs["max_new_tokens"] = length_sampler()

        self.model, layer_norm_params = cast_layernorm_dtype(self.model, self.compute_dtype)
        unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
        response: torch.Tensor = unwrapped_model.generate(**batch, **generation_kwargs)
        self.model, _ = cast_layernorm_dtype(self.model, self.compute_dtype, layer_norm_params)

        # Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop
        # Inspired by: https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_seq2seq.py#L273
        if unwrapped_model.pretrained_model.generation_config._from_model_config:
            unwrapped_model.pretrained_model.generation_config._from_model_config = False

        queries, responses = [], []
        query, response = batch["input_ids"].detach().cpu(), response[:, batch["input_ids"].size(-1):].detach().cpu()
        for i in range(len(query)):
            query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0]
            response_length = (response[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
            queries.append(query[i, query_length:]) # remove padding from left
            responses.append(response[i, :response_length]) # remove padding from right

        return queries, responses

    @torch.no_grad()
    def get_rewards(
        self,
        queries: List[torch.Tensor],
        responses: List[torch.Tensor],
        unwrapped_model: "AutoModelForCausalLMWithValueHead"
    ) -> List[torch.Tensor]:
        r"""
        Computes scores using given reward model.
        """
        replace_model(unwrapped_model, target="reward")
        batch = self.prepare_model_inputs(queries, responses)

        with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
            _, _, values = self.model(**batch, output_hidden_states=True, return_dict=True)

        if values.size(0) != batch["input_ids"].size(0): # adapt to chatglm2
            values = torch.transpose(values, 0, 1)

        rewards = [reward for reward in values[:, -1].float().detach().cpu()] # use fp32 type
        replace_model(unwrapped_model, target="default")
        return rewards

    @PPODecorators.empty_cuda_cache()
    def batched_forward_pass(
        self,
        model: "AutoModelForCausalLMWithValueHead",
        queries: torch.Tensor,
        responses: torch.Tensor,
        model_inputs: dict,
        return_logits: Optional[bool] = False
    ):
        r"""
        Calculates model outputs in multiple batches.

        Subclass and override to inject custom behavior.
        """
        bs = len(queries)
        fbs = self.config.mini_batch_size
        all_logprobs = []
        all_logits = []
        all_masks = []
        all_values = []

        for i in range(math.ceil(bs / fbs)):
            input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
            query_batch = queries[i * fbs : (i + 1) * fbs]
            response_batch = responses[i * fbs : (i + 1) * fbs]
            input_ids = input_kwargs["input_ids"]
            attention_mask = input_kwargs["attention_mask"]

            with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
                logits, _, values = model(**input_kwargs)

            if values.size(0) != input_ids.size(0): # adapt to chatglm2
                values = torch.transpose(values, 0, 1)

            logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
            masks = torch.zeros_like(attention_mask)
            masks[:, :-1] = attention_mask[:, 1:]

            for j in range(len(query_batch)):
                start = len(query_batch[j]) - 1
                if attention_mask[j, 0] == 0:  # offset left padding
                    start += attention_mask[j, :].nonzero()[0]
                end = start + len(response_batch[j])

                masks[j, :start] = 0
                masks[j, end:] = 0

            if return_logits:
                all_logits.append(logits)
            else:
                del logits

            all_values.append(values)
            all_logprobs.append(logprobs)
            all_masks.append(masks)

        return (
            torch.cat(all_logprobs),
            torch.cat(all_logits)[:, :-1] if return_logits else None,
            torch.cat(all_values)[:, :-1],
            torch.cat(all_masks)[:, :-1],
        )

    def save_model(self, output_dir: Optional[str] = None) -> None:
        r"""
        Saves model checkpoint.

        Subclass and override to inject custom behavior.
        """
        if self.args.should_save:
            self._save(output_dir)