runner.py 9.73 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
import gradio as gr
import logging
import os
import threading
import time
import transformers
from transformers.trainer import TRAINING_ARGS_NAME
from typing import Any, Dict, Generator, List, Tuple

from llmtuner.extras.callbacks import LogCallback
11
from llmtuner.extras.constants import DEFAULT_MODULE, TRAINING_STAGES
zhaoying1's avatar
zhaoying1 committed
12
13
14
from llmtuner.extras.logging import LoggerHandler
from llmtuner.extras.misc import torch_gc
from llmtuner.tuner import run_exp
15
from llmtuner.webui.common import get_model_path, get_save_dir, load_config
zhaoying1's avatar
zhaoying1 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from llmtuner.webui.locales import ALERTS
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar


class Runner:

    def __init__(self):
        self.aborted = False
        self.running = False
        self.logger_handler = LoggerHandler()
        self.logger_handler.setLevel(logging.INFO)
        logging.root.addHandler(self.logger_handler)
        transformers.logging.add_handler(self.logger_handler)

    def set_abort(self):
        self.aborted = True
        self.running = False

    def _initialize(
        self, lang: str, model_name: str, dataset: List[str]
    ) -> str:
        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not get_model_path(model_name):
            return ALERTS["err_no_path"][lang]

        if len(dataset) == 0:
            return ALERTS["err_no_dataset"][lang]

        self.aborted = False
        self.logger_handler.reset()
        self.trainer_callback = LogCallback(self)
        return ""

    def _finalize(
        self, lang: str, finish_info: str
    ) -> str:
        self.running = False
        torch_gc()
        if self.aborted:
            return ALERTS["info_aborted"][lang]
        else:
            return finish_info

    def _parse_train_args(
        self,
        lang: str,
        model_name: str,
        checkpoints: List[str],
        finetuning_type: str,
        quantization_bit: str,
        template: str,
        system_prompt: str,
        training_stage: str,
        dataset_dir: str,
        dataset: List[str],
        max_source_length: int,
        max_target_length: int,
        learning_rate: str,
        num_train_epochs: str,
        max_samples: str,
        batch_size: int,
        gradient_accumulation_steps: int,
        lr_scheduler_type: str,
        max_grad_norm: str,
        val_size: float,
        logging_steps: int,
        save_steps: int,
        warmup_steps: int,
        compute_type: str,
        lora_rank: int,
        lora_dropout: float,
        lora_target: str,
        resume_lora_training: bool,
        dpo_beta: float,
        reward_model: str,
        output_dir: str
    ) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
        if checkpoints:
            checkpoint_dir = ",".join(
100
                [get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
zhaoying1's avatar
zhaoying1 committed
101
102
103
104
            )
        else:
            checkpoint_dir = None

105
106
107
108
        output_dir = get_save_dir(model_name, finetuning_type, output_dir)

        user_config = load_config()
        cache_dir = user_config.get("cache_dir", None)
zhaoying1's avatar
zhaoying1 committed
109
110

        args = dict(
111
            stage=TRAINING_STAGES[training_stage],
zhaoying1's avatar
zhaoying1 committed
112
113
            model_name_or_path=get_model_path(model_name),
            do_train=True,
114
115
            overwrite_cache=False,
            cache_dir=cache_dir,
zhaoying1's avatar
zhaoying1 committed
116
117
            checkpoint_dir=checkpoint_dir,
            finetuning_type=finetuning_type,
118
            quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
zhaoying1's avatar
zhaoying1 committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            template=template,
            system_prompt=system_prompt,
            dataset_dir=dataset_dir,
            dataset=",".join(dataset),
            max_source_length=max_source_length,
            max_target_length=max_target_length,
            learning_rate=float(learning_rate),
            num_train_epochs=float(num_train_epochs),
            max_samples=int(max_samples),
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            lr_scheduler_type=lr_scheduler_type,
            max_grad_norm=float(max_grad_norm),
            logging_steps=logging_steps,
            save_steps=save_steps,
            warmup_steps=warmup_steps,
            lora_rank=lora_rank,
            lora_dropout=lora_dropout,
            lora_target=lora_target or DEFAULT_MODULE.get(model_name.split("-")[0], "q_proj,v_proj"),
138
139
140
            resume_lora_training=(
                False if TRAINING_STAGES[training_stage] in ["rm", "ppo", "dpo"] else resume_lora_training
            ),
zhaoying1's avatar
zhaoying1 committed
141
142
143
144
            output_dir=output_dir
        )
        args[compute_type] = True

145
        if args["stage"] == "ppo":
zhaoying1's avatar
zhaoying1 committed
146
147
            args["reward_model"] = reward_model
            val_size = 0
148
149

        if args["stage"] == "dpo":
zhaoying1's avatar
zhaoying1 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            args["dpo_beta"] = dpo_beta

        if val_size > 1e-6:
            args["val_size"] = val_size
            args["evaluation_strategy"] = "steps"
            args["eval_steps"] = save_steps
            args["load_best_model_at_end"] = True

        return lang, model_name, dataset, output_dir, args

    def _parse_eval_args(
        self,
        lang: str,
        model_name: str,
        checkpoints: List[str],
        finetuning_type: str,
        quantization_bit: str,
        template: str,
        system_prompt: str,
        dataset_dir: str,
        dataset: List[str],
        max_source_length: int,
        max_target_length: int,
        max_samples: str,
        batch_size: int,
        predict: bool
    ) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
        if checkpoints:
            checkpoint_dir = ",".join(
179
                [get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
zhaoying1's avatar
zhaoying1 committed
180
            )
181
            output_dir = get_save_dir(model_name, finetuning_type, "eval_" + "_".join(checkpoints))
zhaoying1's avatar
zhaoying1 committed
182
183
        else:
            checkpoint_dir = None
184
185
186
187
            output_dir = get_save_dir(model_name, finetuning_type, "eval_base")

        user_config = load_config()
        cache_dir = user_config.get("cache_dir", None)
zhaoying1's avatar
zhaoying1 committed
188
189
190
191
192

        args = dict(
            stage="sft",
            model_name_or_path=get_model_path(model_name),
            do_eval=True,
193
            overwrite_cache=False,
zhaoying1's avatar
zhaoying1 committed
194
            predict_with_generate=True,
195
            cache_dir=cache_dir,
zhaoying1's avatar
zhaoying1 committed
196
197
            checkpoint_dir=checkpoint_dir,
            finetuning_type=finetuning_type,
198
            quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
zhaoying1's avatar
zhaoying1 committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            template=template,
            system_prompt=system_prompt,
            dataset_dir=dataset_dir,
            dataset=",".join(dataset),
            max_source_length=max_source_length,
            max_target_length=max_target_length,
            max_samples=int(max_samples),
            per_device_eval_batch_size=batch_size,
            output_dir=output_dir
        )

        if predict:
            args.pop("do_eval", None)
            args["do_predict"] = True

        return lang, model_name, dataset, output_dir, args

    def preview_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, _, args = self._parse_train_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
        else:
            yield gen_cmd(args), gr.update(visible=False)

    def preview_eval(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, _, args = self._parse_eval_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
        else:
            yield gen_cmd(args), gr.update(visible=False)

    def run_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, output_dir, args = self._parse_train_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
            return

        self.running = True
        run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
        thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
        thread.start()

        while thread.is_alive():
            time.sleep(2)
            if self.aborted:
                yield ALERTS["info_aborting"][lang], gr.update(visible=False)
            else:
                yield self.logger_handler.log, update_process_bar(self.trainer_callback)

        if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
            finish_info = ALERTS["info_finished"][lang]
        else:
            finish_info = ALERTS["err_failed"][lang]

        yield self._finalize(lang, finish_info), gr.update(visible=False)

    def run_eval(self, *args) -> Generator[str, None, None]:
        lang, model_name, dataset, output_dir, args = self._parse_eval_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
            return

        self.running = True
        run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
        thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
        thread.start()

        while thread.is_alive():
            time.sleep(2)
            if self.aborted:
                yield ALERTS["info_aborting"][lang], gr.update(visible=False)
            else:
                yield self.logger_handler.log, update_process_bar(self.trainer_callback)

        if os.path.exists(os.path.join(output_dir, "all_results.json")):
            finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
        else:
            finish_info = ALERTS["err_failed"][lang]

        yield self._finalize(lang, finish_info), gr.update(visible=False)