workflow.py 2.22 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/language-modeling/run_clm.py

import math
from typing import TYPE_CHECKING, Optional, List
5
from transformers import DataCollatorForLanguageModeling, Trainer
zhaoying1's avatar
zhaoying1 committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer

if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments, TrainerCallback
    from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments


def run_pt(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
    callbacks: Optional[List["TrainerCallback"]] = None
):
    dataset = get_dataset(model_args, data_args)
    model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="pt")
    dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="pt")
    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    # Initialize our Trainer
29
    trainer = Trainer(
zhaoying1's avatar
zhaoying1 committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        model=model,
        args=training_args,
        tokenizer=tokenizer,
        data_collator=data_collator,
        callbacks=callbacks,
        **split_dataset(dataset, data_args, training_args)
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        trainer.save_model()
        if trainer.is_world_process_zero() and model_args.plot_loss:
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")

        metrics["perplexity"] = perplexity
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)