collator.py 2.1 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import torch
from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple
from transformers import DataCollatorForSeq2Seq


@dataclass
class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
    r"""
    Data collator for pairwise data.
    """

    def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
        padded_labels = []
        for feature, (prompt_len, answer_len) in zip(batch, positions):
            if self.tokenizer.padding_side == "left":
                start, end = feature.size(0) - answer_len, feature.size(0)
            else:
19
                start, end = prompt_len, prompt_len + answer_len
zhaoying1's avatar
zhaoying1 committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
            padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
            padded_tensor[start:end] = feature[start:end]
            padded_labels.append(padded_tensor)
        return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
        r"""
        Pads batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        label_positions = []
        for key in ("chosen_ids", "rejected_ids"):
            for feature in features:
                prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
                concatenated_features.append({
                    "input_ids": feature["prompt_ids"] + feature[key],
                    "attention_mask": [1] * (prompt_len + answer_len)
                })
                label_positions.append((prompt_len, answer_len))

        batch = self.tokenizer.pad(
            concatenated_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors=self.return_tensors,
        )
        batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
        return batch