llm.py 23.9 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
import ctypes;
import math
import os;
import threading
from typing import Optional, Tuple, Union, List, Callable, Dict, Any;
6
from copy import deepcopy
7
8
9
10
11
12
13
14
15
16

import platform
if platform.system() == 'Windows':
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "fastllm_tools.dll"))
else:
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.so"))

fastllm_lib.create_llm_model.argtypes = [ctypes.c_char_p]
fastllm_lib.create_llm_model.restype = ctypes.c_int

zhouxiang's avatar
zhouxiang committed
17
18
19
20
21
22
fastllm_lib.token_decode.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.token_decode.restype = ctypes.c_int

fastllm_lib.token_encode_string.argtypes = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.token_encode_string.restype = ctypes.c_int

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
fastllm_lib.launch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p,
                                                  ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                  ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_logits_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
fastllm_lib.fetch_response_logits_llm_model.restype = ctypes.c_int

fastllm_lib.response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_char_p,
                                               ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                               ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.launch_response_str_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_str_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_history_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_char_p]
fastllm_lib.make_history_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_input_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.make_input_llm_model.restype = ctypes.c_char_p

fastllm_lib.add_tokenizer_word_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_float, ctypes.c_int]

fastllm_lib.set_device_map.argtype = [ctypes.c_int, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p]

57
58
59
60
61
62
63
64
65
66
67
68
69
fastllm_lib.get_llm_model_type.argtype = [ctypes.c_int]
fastllm_lib.get_llm_model_type.restype = ctypes.c_char_p

fastllm_lib.response_batch_str_llm_model.argtypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_char_p), ctypes.c_int,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_str_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)

fastllm_lib.response_batch_tokens_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int),
                                                        ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                        ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_batch_tokens_llm_model.restype = ctypes.POINTER(ctypes.c_char_p)

70
def set_cpu_threads(threads: int):
zhouxiang's avatar
zhouxiang committed
71
    fastllm_lib.set_cpu_threads(threads);
72
73

def get_cpu_threads() -> int:
zhouxiang's avatar
zhouxiang committed
74
    return fastllm_lib.get_cpu_threads();
75
76

def print_ins_info():
zhouxiang's avatar
zhouxiang committed
77
    fastllm_lib.print_cpu_ins();
78
79

def set_cpu_kvcache(cpu_kvcache):
zhouxiang's avatar
zhouxiang committed
80
    fastllm_lib.set_kvcache_in_cpu(ctypes.c_bool(cpu_kvcache));
81
82

def get_cpu_kvcache():
zhouxiang's avatar
zhouxiang committed
83
    return fastllm_lib.get_kvcache_in_cpu();
84
85

def set_cpu_low_mem(low_mem):
zhouxiang's avatar
zhouxiang committed
86
    fastllm_lib.set_cpu_low_mem(ctypes.c_bool(low_mem));
87
88

def get_cpu_low_mem():
zhouxiang's avatar
zhouxiang committed
89
    return fastllm_lib.get_cpu_low_mem();
90
91

def set_device_map(device_map):
zhouxiang's avatar
zhouxiang committed
92
93
    devices = [];
    values = [];
94
    if (isinstance(device_map, str)):
zhouxiang's avatar
zhouxiang committed
95
96
        devices.append(device_map);
        values.append(1);
97
    elif (isinstance(device_map, list)):
zhouxiang's avatar
zhouxiang committed
98
99
        devices = [str(x) for x in device_map];
        values = [1 for x in device_map];
100
    elif (isinstance(device_map, dict)):
zhouxiang's avatar
zhouxiang committed
101
102
        devices = [str(x) for x in device_map.keys()];
        values = [int(device_map[x]) for x in device_map.keys()];
103
    else:
zhouxiang's avatar
zhouxiang committed
104
105
106
107
        print("set_device_map error.");
        return;
    device_str = ''.join(devices);
    device_len = [len(x) for x in devices];
108
109
110
    fastllm_lib.set_device_map(len(device_len),
                               (ctypes.c_int * len(device_len))(*device_len),
                               device_str.encode(),
zhouxiang's avatar
zhouxiang committed
111
                               (ctypes.c_int * len(values))(*values));
112
113
114
def from_hf(model,
            tokenizer = None,
            dtype = "float16"):
zhouxiang's avatar
zhouxiang committed
115
116
    from fastllm_pytools import hf_model;
    return hf_model.create(model, tokenizer, dtype = dtype);
117
118
119
120
121

class model:
    def __init__ (self, path : str,
                  id : int = -99999):
        if (id != -99999):
zhouxiang's avatar
zhouxiang committed
122
            self.model = id;
123
        else:
zhouxiang's avatar
zhouxiang committed
124
125
126
127
128
129
130
131
132
133
134
135
            self.model = fastllm_lib.create_llm_model(path.encode());
        self.direct_query = False;

        # 为了减少重复申请释放buffer对象而使用的线程局部存储区对象池
        self.thread_local_obj = threading.local()
        self.thread_local_obj.tokenizer_encode_string__output_buffer = None
        self.thread_local_obj.tokenizer_decode_token__output_buffer = None

        # tokenizer_decode_token 输出结果的静态缓存,手工触发构建
        # 由于token数量有限且不太多,所以缓存该结果来减少调用较为适合。
        # 不做成自动缓存是为了避免在多线程调用的时候对缓存dict加锁,同时也为不同场景提供选择空间
        self.tokenizer_decode_token_cache = None
136

137
138
139
        self.model_type = fastllm_lib.get_llm_model_type(self.model).decode()
        # print("model_type:", self.model_type)

140
141
142
143
    def get_prompt(self,
                   query: str,
                   history: List[Tuple[str, str]] = None) -> str:
        if (not(history)):
zhouxiang's avatar
zhouxiang committed
144
145
            history = [];
        prompt = "";
146
        for i, (old_query, response) in enumerate(history):
zhouxiang's avatar
zhouxiang committed
147
148
149
            prompt = fastllm_lib.make_history_llm_model(self.model, prompt.encode(), i, old_query.encode(), response.encode()).decode();
        prompt = fastllm_lib.make_input_llm_model(self.model, prompt.encode(), len(history), query.encode()).decode();
        return prompt;
150
151

    def save(self, path : str):
zhouxiang's avatar
zhouxiang committed
152
        fastllm_lib.save_llm_model(self.model, path.encode());
153
154

    def eval(self):
zhouxiang's avatar
zhouxiang committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        pass;

    def build_tokenizer_decode_token_cache(self):
        if self.tokenizer_decode_token_cache is not None:
            return

        cache_dict = dict()
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model)
        for token_id in range(vocab_size):
            cache_dict[token_id] = self.tokenizer_decode_token(token_id)

        self.tokenizer_decode_token_cache = cache_dict

    def tokenizer_encode_string(self, content: str) -> List[int]:
        output_buffer_init_len = 1024
        if self.thread_local_obj.tokenizer_encode_string__output_buffer is None:
            self.thread_local_obj.tokenizer_encode_string__output_buffer = (ctypes.c_int * output_buffer_init_len)()

        buffer = self.thread_local_obj.tokenizer_encode_string__output_buffer
        buffer_len = len(buffer)
        result_len = fastllm_lib.token_encode_string(self.model, content.encode(), buffer_len, buffer)
        if result_len > buffer_len:
            if result_len > 10240:
                # 要处理的数据过长,使用一次性的buffer
                temp_buffer = (ctypes.c_int * result_len)()
                ret = fastllm_lib.token_encode_string(self.model, content.encode(), result_len, temp_buffer)
                return [i for i in temp_buffer]
            else:
                # 扩展buffer大小
                new_buffer_len = round(math.ceil(result_len / 1024.0)) * 1024
                buffer = (ctypes.c_int * new_buffer_len)()
                self.thread_local_obj.tokenizer_encode_string__output_buffer = buffer
                result_len = fastllm_lib.token_encode_string(self.model, content.encode(), new_buffer_len, buffer)

        return [buffer[i] for i in range(result_len)]

    def tokenizer_decode_token(self, token_id: int) -> bytes:
        if self.tokenizer_decode_token_cache is not None:
            cache_result = self.tokenizer_decode_token_cache.get(token_id)
            if cache_result is not None:
                return cache_result

        output_buffer_init_len = 256
        if self.thread_local_obj.tokenizer_decode_token__output_buffer is None:
            self.thread_local_obj.tokenizer_decode_token__output_buffer = ctypes.create_string_buffer(output_buffer_init_len)

        buffer = self.thread_local_obj.tokenizer_decode_token__output_buffer
        ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
        if ret > 0:
            # buffer长度不够,扩展buffer大小
            new_buffer_len = round(math.ceil(ret / 16.0)) * 16
            buffer = ctypes.create_string_buffer(new_buffer_len)
            self.thread_local_obj.tokenizer_decode_token__output_buffer = buffer
            ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
            assert ret == 0

        buffer_bytes = buffer.raw
        result_len = len(buffer_bytes)
        for i in range(len(buffer_bytes)):
            if buffer_bytes[i] == 0:
                result_len = i
                break
        return buffer_bytes[:result_len]
218
219
220
221
222

    def response_logits(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        tokenizer = None) -> str:
zhouxiang's avatar
zhouxiang committed
223
        prompt = query if self.direct_query else self.get_prompt(query, history);
224
225
        if (tokenizer == None):
            handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
226
227
                                                               ctypes.c_int(1), ctypes.c_bool(False), ctypes.c_float(1), ctypes.c_int(1),
                                                               ctypes.c_float(1), ctypes.c_float(1), ctypes.c_bool(True));
228
        else:
zhouxiang's avatar
zhouxiang committed
229
            input = tokenizer.encode(prompt);
230
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
zhouxiang's avatar
zhouxiang committed
231
232
                                                           1, False, 1, 1, 1, 1, True);
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model);
233
        logits = list(range(vocab_size))
zhouxiang's avatar
zhouxiang committed
234
235
236
        array = (ctypes.c_float * (vocab_size * 4))(*logits);
        ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        out = list(array)[:vocab_size];
237
        while (ret != -1):
zhouxiang's avatar
zhouxiang committed
238
239
            ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        return out;
240
241
242
243
244

    def response(self,
                 query: str,
                 history: List[Tuple[str, str]] = None,
                 max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0) -> str:
zhouxiang's avatar
zhouxiang committed
245
        ret = "";
246
247
248
249
250
251
252
253
        for i in self.stream_response(query = query,
                                      history = history,
                                      max_length = max_length,
                                      do_sample = do_sample,
                                      top_p = top_p, top_k = top_k,
                                      temperature = temperature,
                                      repeat_penalty = repeat_penalty,
                                      one_by_one = True):
zhouxiang's avatar
zhouxiang committed
254
255
            ret += i;
        return ret;
256
257
258
259
260
261

    def stream_response(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                        one_by_one = True):
zhouxiang's avatar
zhouxiang committed
262
        prompt = query if self.direct_query else self.get_prompt(query, history);
263
264
        handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
zhouxiang's avatar
zhouxiang committed
265
266
267
268
                                                           ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False));
        res = "";
        ret = b'';
        fail_cnt = 0;
269
        while True:
zhouxiang's avatar
zhouxiang committed
270
271
            ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
            cur = "";
272
            try:
zhouxiang's avatar
zhouxiang committed
273
274
                cur = ret.decode();
                ret = b'';
275
            except:
zhouxiang's avatar
zhouxiang committed
276
                fail_cnt += 1;
277
                if (fail_cnt == 20):
zhouxiang's avatar
zhouxiang committed
278
                    break;
279
                else:
zhouxiang's avatar
zhouxiang committed
280
281
                    continue;
            fail_cnt = 0;
282
            if (cur == "<flmeos>"):
zhouxiang's avatar
zhouxiang committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                break;
            if one_by_one:
                yield cur;
            else:
                res += cur;
                yield res;

    def stream_response_raw(self,
                            input_tokens: List[int],
                            max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                            one_by_one = True
                            ):
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input_tokens),
                                                       (ctypes.c_int * len(input_tokens))(*input_tokens),
                                                       ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                       ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False))

        # 可能遇到长尾char需要多个token才能够生成,所以只返回bytes,string.decode策略交给外部
        # 方便统计输出token数量,和控制不完整utf8时候解码的逻辑

        total_bytes = b''
        while True:
            cur_token = fastllm_lib.fetch_response_llm_model(self.model, handle)
            if cur_token == -1:
307
                break
zhouxiang's avatar
zhouxiang committed
308
309
310

            cur_bytes = self.tokenizer_decode_token(cur_token)

311
            if one_by_one:
zhouxiang's avatar
zhouxiang committed
312
                yield cur_bytes
313
            else:
zhouxiang's avatar
zhouxiang committed
314
315
                total_bytes += cur_bytes
                yield total_bytes
316
317
318

    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192,
             do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
319
320
321
322
323
324
325
326
        if self.model_type  != "chatglm3":
            if (not(history)):
                history = [];
            prompt = query if self.direct_query else self.get_prompt(query, history);
            input = tokenizer.encode(prompt);
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False);
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            result = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                result.append(cur);
            response = tokenizer.decode(result);
            history = history + [(query, response)];
            return response, history;
        else:
            if history is None:
                history = []
            role = "user"
            input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
            history.append({"role": role, "content": query})

            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
            response = tokenizer.decode(tokens);
            if response and response[-1] != "�":
                response, new_history = self.process_chatglm3_response(response, history)
                return response, new_history
357
358
359
360

    def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values = None,
                    max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                    return_past_key_values = False, **kwargs) -> str:
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        if self.model_type  != "chatglm3":
            if (not(history)):
                history = [];
            prompt = query if self.direct_query else self.get_prompt(query, history);
            input = tokenizer.encode(prompt);
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
                response = tokenizer.decode(tokens);
                new_history = history + [(query, response)];
                if return_past_key_values:
                    yield response, new_history, None;
                else:
                    yield response, new_history;
        else:
            if history is None:
                history = []
            role = "user"
            input = self.build_chatglm3_input(tokenizer, query, history=history, role=role)
            history.append({"role": role, "content": query})

            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                           False);
            tokens = [];
            while True:
                cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
                if (cur == -1):
                    break;
                tokens.append(cur);
                response = tokenizer.decode(tokens);
                if response and response[-1] != "�":
                    response, new_history = self.process_chatglm3_response(response, history)
                    if return_past_key_values:
                        yield response, new_history, past_key_values
                    else:
                        yield response, new_history

405
406
407

    def set_adapter(self, name: str):
        fastllm_lib.set_adapter(self.model, str(name).encode())
408

409
410
    def disable_adapter(self):
        fastllm_lib.disable_adapter(self.model)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    def process_chatglm3_response(self, output, history):
        content = ""
        history = deepcopy(history)
        for response in output.split("<|assistant|>"):
            metadata, content = response.split("\n", maxsplit=1)
            if not metadata.strip():
                content = content.strip()
                history.append({"role": "assistant", "metadata": metadata, "content": content})
                content = content.replace("[[训练时间]]", "2023年")
            else:
                history.append({"role": "assistant", "metadata": metadata, "content": content})
                if history[0]["role"] == "system" and "tools" in history[0]:
                    content = "\n".join(content.split("\n")[1:-1])
                    def tool_call(**kwargs):
                        return kwargs
                    parameters = eval(content)
                    content = {"name": metadata.strip(), "parameters": parameters}
                else:
                    content = {"name": metadata.strip(), "content": content}
        return content, history

    def build_chatglm3_input(self, tokenizer, query, history=None, role="user"):
        if history is None:
            history = []
        input_ids = []
        for item in history:
            content = item["content"]
            if item["role"] == "system" and "tools" in item:
                content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
            input_ids.extend(tokenizer.build_single_message(item["role"], item.get("metadata", ""), content))
        input_ids.extend(tokenizer.build_single_message(role, "", query))
        input_ids.extend([tokenizer.get_command("<|assistant|>")])
        return input_ids

    def response_batch(self, querys: List[str],
                       historys: List[List[Tuple[str, str]]] = None,
                       max_length: int = 1024, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                       **kwargs) -> List[str]:
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]
        inputs = (ctypes.c_char_p * query_size)()
        for i, query in enumerate(querys):
            prompt = query if self.direct_query else self.get_prompt(query, historys[i])
            inputs[i] = ctypes.c_char_p(prompt.encode())

        outputs = fastllm_lib.response_batch_str_llm_model(self.model, inputs, query_size,
                                                           max_length, do_sample, top_p, top_k, temperature, repeat_penalty, False)

        responses = []
        for i in range(query_size):
            response = ctypes.string_at(outputs[i]).decode()
            responses.append(response)
            historys[i] = historys[i] + [(querys[i], response)]
        return responses, historys

    def chat_batch(self, tokenizer, querys: List[str], historys: List[List[Tuple[str, str]]] = None, max_length: int = 1024,
                   do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
        query_size = len(querys)
        if (not(historys)):
            historys = [[] for _ in range(query_size)]

            inputs = []
            inputs_len = []
            for i, query in enumerate(querys):
                prompt = query if self.direct_query else self.get_prompt(query, historys[i])
                input = tokenizer.encode(prompt);
                inputs.extend(input)
                inputs_len.append(len(input))

            outputs = fastllm_lib.response_batch_tokens_llm_model(self.model, query_size,
                                                                  (ctypes.c_int * len(inputs_len))(*inputs_len),
                                                                  (ctypes.c_int * len(inputs))(*inputs),
                                                                  max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
                                                                  False)

            responses = []
            for i in range(query_size):
                response = ctypes.string_at(outputs[i]).decode()
                responses.append(response)
                historys[i] = historys[i] + [(querys[i], response)]
            return responses, historys