animate.py 8.82 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import datetime
import inspect
import os
from omegaconf import OmegaConf

import torch
import torchvision.transforms as transforms

import diffusers
from diffusers import AutoencoderKL, DDIMScheduler

from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from animatediff.models.unet import UNet3DConditionModel
from animatediff.models.sparse_controlnet import SparseControlNetModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.util import load_weights
from diffusers.utils.import_utils import is_xformers_available

from einops import rearrange, repeat

import csv, pdb, glob, math
from pathlib import Path
from PIL import Image
import numpy as np


@torch.no_grad()
def main(args):
    *_, func_args = inspect.getargvalues(inspect.currentframe())
    func_args = dict(func_args)
    
    time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
    savedir = f"samples/{Path(args.config).stem}-{time_str}"
    os.makedirs(savedir)

    config  = OmegaConf.load(args.config)
    samples = []

    # create validation pipeline
    tokenizer    = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").cuda()
    vae          = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").cuda()
    print("load sd completed.")
    sample_idx = 0
    for model_idx, model_config in enumerate(config):
        model_config.W = model_config.get("W", args.W)
        model_config.H = model_config.get("H", args.H)
        model_config.L = model_config.get("L", args.L)

        inference_config = OmegaConf.load(model_config.get("inference_config", args.inference_config))
        unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)).cuda()

        # load controlnet model
        controlnet = controlnet_images = None
        if model_config.get("controlnet_path", "") != "":
            assert model_config.get("controlnet_images", "") != ""
            assert model_config.get("controlnet_config", "") != ""
            
            unet.config.num_attention_heads = 8
            unet.config.projection_class_embeddings_input_dim = None

            controlnet_config = OmegaConf.load(model_config.controlnet_config)
            controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {}))

            print(f"loading controlnet checkpoint from {model_config.controlnet_path} ...")
            controlnet_state_dict = torch.load(model_config.controlnet_path, map_location="cpu")
            controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict
            controlnet_state_dict.pop("animatediff_config", "")
            controlnet.load_state_dict(controlnet_state_dict)
            controlnet.cuda()

            image_paths = model_config.controlnet_images
            if isinstance(image_paths, str): image_paths = [image_paths]

            print(f"controlnet image paths:")
            for path in image_paths: print(path)
            assert len(image_paths) <= model_config.L

            image_transforms = transforms.Compose([
                transforms.RandomResizedCrop(
                    (model_config.H, model_config.W), (1.0, 1.0), 
                    ratio=(model_config.W/model_config.H, model_config.W/model_config.H)
                ),
                transforms.ToTensor(),
            ])

            if model_config.get("normalize_condition_images", False):
                def image_norm(image):
                    image = image.mean(dim=0, keepdim=True).repeat(3,1,1)
                    image -= image.min()
                    image /= image.max()
                    return image
            else: image_norm = lambda x: x
                
            controlnet_images = [image_norm(image_transforms(Image.open(path).convert("RGB"))) for path in image_paths]

            os.makedirs(os.path.join(savedir, "control_images"), exist_ok=True)
            for i, image in enumerate(controlnet_images):
                Image.fromarray((255. * (image.numpy().transpose(1,2,0))).astype(np.uint8)).save(f"{savedir}/control_images/{i}.png")

            controlnet_images = torch.stack(controlnet_images).unsqueeze(0).cuda()
            controlnet_images = rearrange(controlnet_images, "b f c h w -> b c f h w")

            if controlnet.use_simplified_condition_embedding:
                num_controlnet_images = controlnet_images.shape[2]
                controlnet_images = rearrange(controlnet_images, "b c f h w -> (b f) c h w")
                controlnet_images = vae.encode(controlnet_images * 2. - 1.).latent_dist.sample() * 0.18215
                controlnet_images = rearrange(controlnet_images, "(b f) c h w -> b c f h w", f=num_controlnet_images)

        # set xformers
        if is_xformers_available() and (not args.without_xformers):
            unet.enable_xformers_memory_efficient_attention()
            if controlnet is not None: controlnet.enable_xformers_memory_efficient_attention()

        pipeline = AnimationPipeline(
            vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
            controlnet=controlnet,
            scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
        ).to("cuda")

        pipeline = load_weights(
            pipeline,
            # motion module
            motion_module_path         = model_config.get("motion_module", ""),
            motion_module_lora_configs = model_config.get("motion_module_lora_configs", []),
            # domain adapter
            adapter_lora_path          = model_config.get("adapter_lora_path", ""),
            adapter_lora_scale         = model_config.get("adapter_lora_scale", 1.0),
            # image layers
            dreambooth_model_path      = model_config.get("dreambooth_path", ""),
            lora_model_path            = model_config.get("lora_model_path", ""),
            lora_alpha                 = model_config.get("lora_alpha", 0.8),
        ).to("cuda")

        prompts      = model_config.prompt
        n_prompts    = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt
        
        random_seeds = model_config.get("seed", [-1])
        random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
        random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
        
        config[model_idx].random_seed = []
        for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
            
            # manually set random seed for reproduction
            if random_seed != -1: torch.manual_seed(random_seed)
            else: torch.seed()
            config[model_idx].random_seed.append(torch.initial_seed())
            
            print(f"current seed: {torch.initial_seed()}")
            print(f"sampling {prompt} ...")
            sample = pipeline(
                prompt,
                negative_prompt     = n_prompt,
                num_inference_steps = model_config.steps,
                guidance_scale      = model_config.guidance_scale,
                width               = model_config.W,
                height              = model_config.H,
                video_length        = model_config.L,

                controlnet_images = controlnet_images,
                controlnet_image_index = model_config.get("controlnet_image_indexs", [0]),
            ).videos
            samples.append(sample)

            prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
            save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif")
            print(f"save to {savedir}/sample/{prompt}.gif")
            
            sample_idx += 1

    samples = torch.concat(samples)
    save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4)

    OmegaConf.save(config, f"{savedir}/config.yaml")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",)
    parser.add_argument("--inference-config",      type=str, default="configs/inference/inference-v1.yaml")    
    parser.add_argument("--config",                type=str, required=True)
    
    parser.add_argument("--L", type=int, default=16 )
    parser.add_argument("--W", type=int, default=256)
    parser.add_argument("--H", type=int, default=256)

    parser.add_argument("--without-xformers", action="store_true")

    args = parser.parse_args()
    main(args)