Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
alphafold2_jax
Commits
2590be89
Commit
2590be89
authored
Nov 23, 2023
by
zhuwenwen
Browse files
use precomputed msas and features.pkl
parent
5ecff046
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
17 additions
and
17 deletions
+17
-17
README.md
README.md
+8
-11
run_alphafold.py
run_alphafold.py
+9
-4
run_monomer.sh
run_monomer.sh
+0
-1
run_multimer.sh
run_multimer.sh
+0
-1
No files found.
README.md
View file @
2590be89
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
*
@Author: zhuww
*
@Author: zhuww
*
@email: zhuww@sugon.com
*
@email: zhuww@sugon.com
*
@Date: 2023-04-06 18:04:07
*
@Date: 2023-04-06 18:04:07
*
@LastEditTime: 2023-11-
15 17:30
:01
*
@LastEditTime: 2023-11-
23 16:01
:01
-->
-->
# AF2
# AF2
## 论文
## 论文
...
@@ -96,7 +96,7 @@ $DOWNLOAD_DIR/
...
@@ -96,7 +96,7 @@ $DOWNLOAD_DIR/
```
bash
```
bash
./run_monomer.sh
./run_monomer.sh
```
```
单体推理参数说明:download_dir为数据集下载目录,monomer.fasta为推理的单体序列;
`--output_dir`
为输出目录;
`model_names`
为推理的模型名称,
`--model_preset=monomer`
为单体模型配置;
`--run_relax=true`
为进行relax操作;
`--use_gpu_relax=true`
为使用gpu进行relax操作(速度更快,但可能不太稳定),
`--use_gpu_relax=false`
为使用CPU进行relax操作(速度慢,但稳定)
;若添加use_precomputed_msas=true则可以加载已经搜索对齐的序列,否则默认进行搜索对齐
。
单体推理参数说明:download_dir为数据集下载目录,monomer.fasta为推理的单体序列;
`--output_dir`
为输出目录;
`model_names`
为推理的模型名称,
`--model_preset=monomer`
为单体模型配置;
`--run_relax=true`
为进行relax操作;
`--use_gpu_relax=true`
为使用gpu进行relax操作(速度更快,但可能不太稳定),
`--use_gpu_relax=false`
为使用CPU进行relax操作(速度慢,但稳定)。
### 多体
### 多体
```
bash
```
bash
...
@@ -129,17 +129,14 @@ $DOWNLOAD_DIR/
...
@@ -129,17 +129,14 @@ $DOWNLOAD_DIR/
测试数据:
[
casp14
](
https://www.predictioncenter.org/casp14/targetlist.cgi
)
、
[
uniprot
](
https://www.uniprot.org/
)
,
测试数据:
[
casp14
](
https://www.predictioncenter.org/casp14/targetlist.cgi
)
、
[
uniprot
](
https://www.uniprot.org/
)
,
使用的加速卡:1张 Z100L-32G
使用的加速卡:1张 Z100L-32G
1、lddt
plddts:见
<target_name>
/ranking_debug.json中的
`plddts`
见
<target_name>
/ranking_debug.json中的
`plddts`
2、其它精度值计算:
[
https://zhanggroup.org/TM-score/
](
https://zhanggroup.org/TM-score/
)
准确性数据:
准确性数据:
| 数据类型 | 序列类型 | 序列标签 | 序列长度 |
GDT-TS | GDT-HA | LDDT | TM score | MaxSub | RMSD
|
| 数据类型 | 序列类型 | 序列标签 | 序列长度 |
LDDT
|
| :------: | :------: | :------: | :------: |:------: |
:------: | :------: | :------: | :------: |:------: |
| :------: | :------: | :------: | :------: |:------: |
| fp32 | 单体 | T1026 | 172 |
0.849 | 0.658 | 75.050 | 0.901 | 0.851 | 1.6
|
| fp32 | 单体 | T1026 | 172 |
75.050
|
| fp32 | 单体 | T1053 | 580 |
0.941 | 0.789 | 92.316 | 0.985 | 0.935 | 1.1 |
| fp32 | 单体 | T1053 | 580 |
92.316 |
| fp32 | 单体 | T1091 | 863 |
0.492 | 0.332 | 85.083 | 0.740 | 0.388 | 6.7
|
| fp32 | 单体 | T1091 | 863 |
85.083
|
## 应用场景
## 应用场景
...
...
run_alphafold.py
View file @
2590be89
...
@@ -194,13 +194,18 @@ def predict_structure(
...
@@ -194,13 +194,18 @@ def predict_structure(
# Get features.
# Get features.
t_0
=
time
.
time
()
t_0
=
time
.
time
()
feature_dict
=
data_pipeline
.
process
(
features_output_path
=
os
.
path
.
join
(
output_dir
,
'features.pkl'
)
input_fasta_path
=
fasta_path
,
if
os
.
path
.
exists
(
features_output_path
):
msa_output_dir
=
msa_output_dir
)
feature_dict
=
pickle
.
load
(
open
(
features_output_path
,
'rb'
))
else
:
feature_dict
=
data_pipeline
.
process
(
input_fasta_path
=
fasta_path
,
msa_output_dir
=
msa_output_dir
)
timings
[
'features'
]
=
time
.
time
()
-
t_0
timings
[
'features'
]
=
time
.
time
()
-
t_0
# Write out features as a pickled dictionary.
# Write out features as a pickled dictionary.
features_output_path
=
os
.
path
.
join
(
output_dir
,
'features.pkl'
)
#
features_output_path = os.path.join(output_dir, 'features.pkl')
with
open
(
features_output_path
,
'wb'
)
as
f
:
with
open
(
features_output_path
,
'wb'
)
as
f
:
pickle
.
dump
(
feature_dict
,
f
,
protocol
=
4
)
pickle
.
dump
(
feature_dict
,
f
,
protocol
=
4
)
...
...
run_monomer.sh
View file @
2590be89
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
python3 run_alphafold.py
\
python3 run_alphafold.py
\
--fasta_paths
=
monomer.fasta
\
--fasta_paths
=
monomer.fasta
\
--output_dir
=
./
\
--output_dir
=
./
\
--use_precomputed_msas
=
false
\
--data_dir
=
$download_dir
\
--data_dir
=
$download_dir
\
--model_names
=
"model_1"
\
--model_names
=
"model_1"
\
--uniref90_database_path
=
$download_dir
/uniref90/uniref90.fasta
\
--uniref90_database_path
=
$download_dir
/uniref90/uniref90.fasta
\
...
...
run_multimer.sh
View file @
2590be89
...
@@ -3,7 +3,6 @@ python3 run_alphafold.py \
...
@@ -3,7 +3,6 @@ python3 run_alphafold.py \
--fasta_paths
=
multimer.fasta
\
--fasta_paths
=
multimer.fasta
\
--output_dir
=
./
\
--output_dir
=
./
\
--num_multimer_predictions_per_model
=
1
\
--num_multimer_predictions_per_model
=
1
\
--use_precomputed_msas
=
false
\
--data_dir
=
$download_dir
\
--data_dir
=
$download_dir
\
--model_names
=
"model_1_multimer_v3"
\
--model_names
=
"model_1_multimer_v3"
\
--uniref90_database_path
=
$download_dir
/uniref90/uniref90.fasta
\
--uniref90_database_path
=
$download_dir
/uniref90/uniref90.fasta
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment