quat_affine_test.py 4.92 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for quat_affine."""

from absl import logging
from absl.testing import absltest
from alphafold.model import quat_affine
import jax
import jax.numpy as jnp
import numpy as np

VERBOSE = False
np.set_printoptions(precision=3, suppress=True)

r2t = quat_affine.rot_list_to_tensor
v2t = quat_affine.vec_list_to_tensor

q2r = lambda q: r2t(quat_affine.quat_to_rot(q))


class QuatAffineTest(absltest.TestCase):

  def _assert_check(self, to_check, tol=1e-5):
    for k, (correct, generated) in to_check.items():
      if VERBOSE:
        logging.info(k)
        logging.info('Correct %s', correct)
        logging.info('Predicted %s', generated)
      self.assertLess(np.max(np.abs(correct - generated)), tol)

  def test_conversion(self):
    quat = jnp.array([-2., 5., -1., 4.])

    rotation = jnp.array([
        [0.26087, 0.130435, 0.956522],
        [-0.565217, -0.782609, 0.26087],
        [0.782609, -0.608696, -0.130435]])

    translation = jnp.array([1., -3., 4.])
    point = jnp.array([0.7, 3.2, -2.9])

    a = quat_affine.QuatAffine(quat, translation, unstack_inputs=True)
    true_new_point = jnp.matmul(rotation, point[:, None])[:, 0] + translation

    self._assert_check({
        'rot': (rotation, r2t(a.rotation)),
        'trans': (translation, v2t(a.translation)),
        'point': (true_new_point,
                  v2t(a.apply_to_point(jnp.moveaxis(point, -1, 0)))),
        # Because of the double cover, we must be careful and compare rotations
        'quat': (q2r(a.quaternion),
                 q2r(quat_affine.rot_to_quat(a.rotation))),

    })

  def test_double_cover(self):
    """Test that -q is the same rotation as q."""
    rng = jax.random.PRNGKey(42)
    keys = jax.random.split(rng)
    q = jax.random.normal(keys[0], (2, 4))
    trans = jax.random.normal(keys[1], (2, 3))
    a1 = quat_affine.QuatAffine(q, trans, unstack_inputs=True)
    a2 = quat_affine.QuatAffine(-q, trans, unstack_inputs=True)

    self._assert_check({
        'rot': (r2t(a1.rotation),
                r2t(a2.rotation)),
        'trans': (v2t(a1.translation),
                  v2t(a2.translation)),
    })

  def test_homomorphism(self):
    rng = jax.random.PRNGKey(42)
    keys = jax.random.split(rng, 4)
    vec_q1 = jax.random.normal(keys[0], (2, 3))

    q1 = jnp.concatenate([
        jnp.ones_like(vec_q1)[:, :1],
        vec_q1], axis=-1)

    q2 = jax.random.normal(keys[1], (2, 4))
    t1 = jax.random.normal(keys[2], (2, 3))
    t2 = jax.random.normal(keys[3], (2, 3))

    a1 = quat_affine.QuatAffine(q1, t1, unstack_inputs=True)
    a2 = quat_affine.QuatAffine(q2, t2, unstack_inputs=True)
    a21 = a2.pre_compose(jnp.concatenate([vec_q1, t1], axis=-1))

    rng, key = jax.random.split(rng)
    x = jax.random.normal(key, (2, 3))
    new_x = a21.apply_to_point(jnp.moveaxis(x, -1, 0))
    new_x_apply2 = a2.apply_to_point(a1.apply_to_point(jnp.moveaxis(x, -1, 0)))

    self._assert_check({
        'quat': (q2r(quat_affine.quat_multiply(a2.quaternion, a1.quaternion)),
                 q2r(a21.quaternion)),
        'rot': (jnp.matmul(r2t(a2.rotation), r2t(a1.rotation)),
                r2t(a21.rotation)),
        'point': (v2t(new_x_apply2),
                  v2t(new_x)),
        'inverse': (x, v2t(a21.invert_point(new_x))),
    })

  def test_batching(self):
    """Test that affine applies batchwise."""
    rng = jax.random.PRNGKey(42)
    keys = jax.random.split(rng, 3)
    q = jax.random.uniform(keys[0], (5, 2, 4))
    t = jax.random.uniform(keys[1], (2, 3))
    x = jax.random.uniform(keys[2], (5, 1, 3))

    a = quat_affine.QuatAffine(q, t, unstack_inputs=True)
    y = v2t(a.apply_to_point(jnp.moveaxis(x, -1, 0)))

    y_list = []
    for i in range(5):
      for j in range(2):
        a_local = quat_affine.QuatAffine(q[i, j], t[j],
                                         unstack_inputs=True)
        y_local = v2t(a_local.apply_to_point(jnp.moveaxis(x[i, 0], -1, 0)))
        y_list.append(y_local)
    y_combine = jnp.reshape(jnp.stack(y_list, axis=0), (5, 2, 3))

    self._assert_check({
        'batch': (y_combine, y),
        'quat': (q2r(a.quaternion),
                 q2r(quat_affine.rot_to_quat(a.rotation))),
    })

  def assertAllClose(self, a, b, rtol=1e-06, atol=1e-06):
    self.assertTrue(np.allclose(a, b, rtol=rtol, atol=atol))

  def assertAllEqual(self, a, b):
    self.assertTrue(np.all(np.array(a) == np.array(b)))


if __name__ == '__main__':
  absltest.main()