AlphaFold.ipynb 33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "pc5-mbsX9PZC"
   },
   "source": [
    "# AlphaFold Colab\n",
    "\n",
    "This Colab notebook allows you to easily predict the structure of a protein using a slightly simplified version of [AlphaFold v2.0](https://doi.org/10.1038/s41586-021-03819-2). \n",
    "\n",
    "**Differences to AlphaFold v2.0**\n",
    "\n",
    "In comparison to AlphaFold v2.0, this Colab notebook uses **no templates (homologous structures)** and a selected portion of the [BFD database](https://bfd.mmseqs.com/). We have validated these changes on several thousand recent PDB structures. While accuracy will be near-identical to the full AlphaFold system on many targets, a small fraction have a large drop in accuracy due to the smaller MSA and lack of templates. For best reliability, we recommend instead using the [full open source AlphaFold](https://github.com/deepmind/alphafold/), or the [AlphaFold Protein Structure Database](https://alphafold.ebi.ac.uk/).\n",
    "\n",
    "Please note that this Colab notebook is provided as an early-access prototype and is not a finished product. It is provided for theoretical modelling only and caution should be exercised in its use. \n",
    "\n",
    "**Citing this work**\n",
    "\n",
    "Any publication that discloses findings arising from using this notebook should [cite](https://github.com/deepmind/alphafold/#citing-this-work) the [AlphaFold paper](https://doi.org/10.1038/s41586-021-03819-2).\n",
    "\n",
    "**Licenses**\n",
    "\n",
    "This Colab uses the [AlphaFold model parameters](https://github.com/deepmind/alphafold/#model-parameters-license) and its outputs are thus for non-commercial use only, under the Creative Commons Attribution-NonCommercial 4.0 International ([CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/legalcode)) license. The Colab itself is provided under the [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0). See the full license statement below.\n",
    "\n",
    "**More information**\n",
    "\n",
    "You can find more information about how AlphaFold works in our two Nature papers:\n",
    "\n",
    "*   [AlphaFold methods paper](https://www.nature.com/articles/s41586-021-03819-2)\n",
    "*   [AlphaFold predictions of the human proteome paper](https://www.nature.com/articles/s41586-021-03828-1)\n",
    "\n",
    "FAQ on how to interpret AlphaFold predictions are [here](https://alphafold.ebi.ac.uk/faq)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "cellView": "form",
    "id": "woIxeCPygt7K"
   },
   "outputs": [],
   "source": [
    "#@title Install third-party software\n",
    "\n",
    "#@markdown Please execute this cell by pressing the _Play_ button \n",
    "#@markdown on the left to download and import third-party software \n",
    "#@markdown in this Colab notebook. (See the [acknowledgements](https://github.com/deepmind/alphafold/#acknowledgements) in our readme.)\n",
    "\n",
    "#@markdown **Note**: This installs the software on the Colab \n",
    "#@markdown notebook in the cloud and not on your computer.\n",
    "\n",
    "from IPython.utils import io\n",
    "import os\n",
    "import subprocess\n",
    "import tqdm.notebook\n",
    "\n",
    "TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]'\n",
    "\n",
    "try:\n",
    "  with tqdm.notebook.tqdm(total=100, bar_format=TQDM_BAR_FORMAT) as pbar:\n",
    "    with io.capture_output() as captured:\n",
65
66
67
    "      # Uninstall default Colab version of TF.\n",
    "      %shell pip uninstall -y tensorflow\n",
    "\n",
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    "      %shell sudo apt install --quiet --yes hmmer\n",
    "      pbar.update(6)\n",
    "\n",
    "      # Install py3dmol.\n",
    "      %shell pip install py3dmol\n",
    "      pbar.update(2)\n",
    "\n",
    "      # Install OpenMM and pdbfixer.\n",
    "      %shell rm -rf /opt/conda\n",
    "      %shell wget -q -P /tmp \\\n",
    "        https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \\\n",
    "          && bash /tmp/Miniconda3-latest-Linux-x86_64.sh -b -p /opt/conda \\\n",
    "          && rm /tmp/Miniconda3-latest-Linux-x86_64.sh\n",
    "      pbar.update(9)\n",
    "\n",
    "      PATH=%env PATH\n",
    "      %env PATH=/opt/conda/bin:{PATH}\n",
    "      %shell conda update -qy conda \\\n",
    "          && conda install -qy -c conda-forge \\\n",
    "            python=3.7 \\\n",
    "            openmm=7.5.1 \\\n",
    "            pdbfixer\n",
    "      pbar.update(80)\n",
    "\n",
    "      # Create a ramdisk to store a database chunk to make Jackhmmer run fast.\n",
    "      %shell sudo mkdir -m 777 --parents /tmp/ramdisk\n",
    "      %shell sudo mount -t tmpfs -o size=9G ramdisk /tmp/ramdisk\n",
    "      pbar.update(2)\n",
    "\n",
    "      %shell wget -q -P /content \\\n",
    "        https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt\n",
    "      pbar.update(1)\n",
    "except subprocess.CalledProcessError:\n",
    "  print(captured)\n",
    "  raise"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "cellView": "form",
    "id": "VzJ5iMjTtoZw"
   },
   "outputs": [],
   "source": [
    "#@title Download AlphaFold\n",
    "\n",
    "#@markdown Please execute this cell by pressing the *Play* button on \n",
    "#@markdown the left.\n",
    "\n",
    "GIT_REPO = 'https://github.com/deepmind/alphafold'\n",
    "\n",
    "SOURCE_URL = 'https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar'\n",
    "PARAMS_DIR = './alphafold/data/params'\n",
    "PARAMS_PATH = os.path.join(PARAMS_DIR, os.path.basename(SOURCE_URL))\n",
    "\n",
    "try:\n",
    "  with tqdm.notebook.tqdm(total=100, bar_format=TQDM_BAR_FORMAT) as pbar:\n",
    "    with io.capture_output() as captured:\n",
    "      %shell rm -rf alphafold\n",
    "      %shell git clone {GIT_REPO} alphafold\n",
    "      pbar.update(8)\n",
131
132
133
134
    "      # Install the required versions of all dependencies.\n",
    "      %shell pip3 install -r ./alphafold/requirements.txt\n",
    "      # Run setup.py to install only AlphaFold.\n",
    "      %shell pip3 install --no-dependencies ./alphafold\n",
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    "      pbar.update(10)\n",
    "\n",
    "      # Apply OpenMM patch.\n",
    "      %shell pushd /opt/conda/lib/python3.7/site-packages/ && \\\n",
    "          patch -p0 < /content/alphafold/docker/openmm.patch && \\\n",
    "          popd\n",
    "          \n",
    "      %shell mkdir -p /content/alphafold/common\n",
    "      %shell cp -f /content/stereo_chemical_props.txt /content/alphafold/common\n",
    "\n",
    "      %shell mkdir --parents \"{PARAMS_DIR}\"\n",
    "      %shell wget -O \"{PARAMS_PATH}\" \"{SOURCE_URL}\"\n",
    "      pbar.update(27)\n",
    "\n",
    "      %shell tar --extract --verbose --file=\"{PARAMS_PATH}\" \\\n",
    "        --directory=\"{PARAMS_DIR}\" --preserve-permissions\n",
    "      %shell rm \"{PARAMS_PATH}\"\n",
    "      pbar.update(55)\n",
    "except subprocess.CalledProcessError:\n",
    "  print(captured)\n",
    "  raise\n",
    "\n",
    "import jax\n",
    "if jax.local_devices()[0].platform == 'tpu':\n",
    "  raise RuntimeError('Colab TPU runtime not supported. Change it to GPU via Runtime -> Change Runtime Type -> Hardware accelerator -> GPU.')\n",
    "elif jax.local_devices()[0].platform == 'cpu':\n",
    "  raise RuntimeError('Colab CPU runtime not supported. Change it to GPU via Runtime -> Change Runtime Type -> Hardware accelerator -> GPU.')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "W4JpOs6oA-QS"
   },
   "source": [
    "## Making a prediction\n",
    "\n",
    "Please paste the sequence of your protein in the text box below, then run the remaining cells via _Runtime_ > _Run after_. You can also run the cells individually by pressing the _Play_ button on the left.\n",
    "\n",
    "Note that the search against databases and the actual prediction can take some time, from minutes to hours, depending on the length of the protein and what type of GPU you are allocated by Colab (see FAQ below)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "cellView": "form",
    "id": "rowN0bVYLe9n"
   },
   "outputs": [],
   "source": [
    "#@title Enter the amino acid sequence to fold ⬇️\n",
    "sequence = 'MAAHKGAEHHHKAAEHHEQAAKHHHAAAEHHEKGEHEQAAHHADTAYAHHKHAEEHAAQAAKHDAEHHAPKPH'  #@param {type:\"string\"}\n",
    "\n",
    "MIN_SEQUENCE_LENGTH = 16\n",
    "MAX_SEQUENCE_LENGTH = 2500\n",
    "\n",
    "# Remove all whitespaces, tabs and end lines; upper-case\n",
    "sequence = sequence.translate(str.maketrans('', '', ' \\n\\t')).upper()\n",
    "aatypes = set('ACDEFGHIKLMNPQRSTVWY')  # 20 standard aatypes\n",
    "if not set(sequence).issubset(aatypes):\n",
    "  raise Exception(f'Input sequence contains non-amino acid letters: {set(sequence) - aatypes}. AlphaFold only supports 20 standard amino acids as inputs.')\n",
    "if len(sequence) < MIN_SEQUENCE_LENGTH:\n",
    "  raise Exception(f'Input sequence is too short: {len(sequence)} amino acids, while the minimum is {MIN_SEQUENCE_LENGTH}')\n",
    "if len(sequence) > MAX_SEQUENCE_LENGTH:\n",
    "  raise Exception(f'Input sequence is too long: {len(sequence)} amino acids, while the maximum is {MAX_SEQUENCE_LENGTH}. Please use the full AlphaFold system for long sequences.')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "cellView": "form",
    "id": "2tTeTTsLKPjB"
   },
   "outputs": [],
   "source": [
    "#@title Search against genetic databases\n",
    "\n",
    "#@markdown Once this cell has been executed, you will see\n",
    "#@markdown statistics about the multiple sequence alignment \n",
    "#@markdown (MSA) that will be used by AlphaFold. In particular, \n",
    "#@markdown you’ll see how well each residue is covered by similar \n",
    "#@markdown sequences in the MSA.\n",
    "\n",
    "# --- Python imports ---\n",
    "import sys\n",
    "sys.path.append('/opt/conda/lib/python3.7/site-packages')\n",
    "\n",
    "import os\n",
    "os.environ['TF_FORCE_UNIFIED_MEMORY'] = '1'\n",
    "os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '2.0'\n",
    "\n",
    "from urllib import request\n",
    "from concurrent import futures\n",
    "from google.colab import files\n",
    "import json\n",
    "from matplotlib import gridspec\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import py3Dmol\n",
    "\n",
    "from alphafold.model import model\n",
    "from alphafold.model import config\n",
    "from alphafold.model import data\n",
    "\n",
    "from alphafold.data import parsers\n",
    "from alphafold.data import pipeline\n",
    "from alphafold.data.tools import jackhmmer\n",
    "\n",
    "from alphafold.common import protein\n",
    "\n",
    "from alphafold.relax import relax\n",
    "from alphafold.relax import utils\n",
    "\n",
    "from IPython import display\n",
    "from ipywidgets import GridspecLayout\n",
    "from ipywidgets import Output\n",
    "\n",
    "# Color bands for visualizing plddt\n",
    "PLDDT_BANDS = [(0, 50, '#FF7D45'),\n",
    "               (50, 70, '#FFDB13'),\n",
    "               (70, 90, '#65CBF3'),\n",
    "               (90, 100, '#0053D6')]\n",
    "\n",
    "# --- Find the closest source ---\n",
    "test_url_pattern = 'https://storage.googleapis.com/alphafold-colab{:s}/latest/uniref90_2021_03.fasta.1'\n",
    "ex = futures.ThreadPoolExecutor(3)\n",
    "def fetch(source):\n",
    "  request.urlretrieve(test_url_pattern.format(source))\n",
    "  return source\n",
    "fs = [ex.submit(fetch, source) for source in ['', '-europe', '-asia']]\n",
    "source = None\n",
    "for f in futures.as_completed(fs):\n",
    "  source = f.result()\n",
    "  ex.shutdown()\n",
    "  break\n",
    "\n",
    "# --- Search against genetic databases ---\n",
    "with open('target.fasta', 'wt') as f:\n",
    "  f.write(f'>query\\n{sequence}')\n",
    "\n",
    "# Run the search against chunks of genetic databases (since the genetic\n",
    "# databases don't fit in Colab ramdisk).\n",
    "\n",
    "jackhmmer_binary_path = '/usr/bin/jackhmmer'\n",
    "dbs = []\n",
    "\n",
    "num_jackhmmer_chunks = {'uniref90': 59, 'smallbfd': 17, 'mgnify': 71}\n",
    "total_jackhmmer_chunks = sum(num_jackhmmer_chunks.values())\n",
    "with tqdm.notebook.tqdm(total=total_jackhmmer_chunks, bar_format=TQDM_BAR_FORMAT) as pbar:\n",
    "  def jackhmmer_chunk_callback(i):\n",
    "    pbar.update(n=1)\n",
    "\n",
    "  pbar.set_description('Searching uniref90')\n",
    "  jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(\n",
    "      binary_path=jackhmmer_binary_path,\n",
    "      database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/uniref90_2021_03.fasta',\n",
    "      get_tblout=True,\n",
    "      num_streamed_chunks=num_jackhmmer_chunks['uniref90'],\n",
    "      streaming_callback=jackhmmer_chunk_callback,\n",
    "      z_value=135301051)\n",
    "  dbs.append(('uniref90', jackhmmer_uniref90_runner.query('target.fasta')))\n",
    "\n",
    "  pbar.set_description('Searching smallbfd')\n",
    "  jackhmmer_smallbfd_runner = jackhmmer.Jackhmmer(\n",
    "      binary_path=jackhmmer_binary_path,\n",
    "      database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/bfd-first_non_consensus_sequences.fasta',\n",
    "      get_tblout=True,\n",
    "      num_streamed_chunks=num_jackhmmer_chunks['smallbfd'],\n",
    "      streaming_callback=jackhmmer_chunk_callback,\n",
    "      z_value=65984053)\n",
    "  dbs.append(('smallbfd', jackhmmer_smallbfd_runner.query('target.fasta')))\n",
    "\n",
    "  pbar.set_description('Searching mgnify')\n",
    "  jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(\n",
    "      binary_path=jackhmmer_binary_path,\n",
    "      database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/mgy_clusters_2019_05.fasta',\n",
    "      get_tblout=True,\n",
    "      num_streamed_chunks=num_jackhmmer_chunks['mgnify'],\n",
    "      streaming_callback=jackhmmer_chunk_callback,\n",
    "      z_value=304820129)\n",
    "  dbs.append(('mgnify', jackhmmer_mgnify_runner.query('target.fasta')))\n",
    "\n",
    "\n",
    "# --- Extract the MSAs and visualize ---\n",
    "# Extract the MSAs from the Stockholm files.\n",
    "# NB: deduplication happens later in pipeline.make_msa_features.\n",
    "\n",
    "mgnify_max_hits = 501\n",
    "\n",
    "msas = []\n",
    "deletion_matrices = []\n",
    "full_msa = []\n",
    "for db_name, db_results in dbs:\n",
    "  unsorted_results = []\n",
    "  for i, result in enumerate(db_results):\n",
    "    msa, deletion_matrix, target_names = parsers.parse_stockholm(result['sto'])\n",
    "    e_values_dict = parsers.parse_e_values_from_tblout(result['tbl'])\n",
    "    e_values = [e_values_dict[t.split('/')[0]] for t in target_names]\n",
    "    zipped_results = zip(msa, deletion_matrix, target_names, e_values)\n",
    "    if i != 0:\n",
    "      # Only take query from the first chunk\n",
    "      zipped_results = [x for x in zipped_results if x[2] != 'query']\n",
    "    unsorted_results.extend(zipped_results)\n",
    "  sorted_by_evalue = sorted(unsorted_results, key=lambda x: x[3])\n",
    "  db_msas, db_deletion_matrices, _, _ = zip(*sorted_by_evalue)\n",
    "  if db_msas:\n",
    "    if db_name == 'mgnify':\n",
    "      db_msas = db_msas[:mgnify_max_hits]\n",
    "      db_deletion_matrices = db_deletion_matrices[:mgnify_max_hits]\n",
    "    full_msa.extend(db_msas)\n",
    "    msas.append(db_msas)\n",
    "    deletion_matrices.append(db_deletion_matrices)\n",
    "    msa_size = len(set(db_msas))\n",
    "    print(f'{msa_size} Sequences Found in {db_name}')\n",
    "\n",
    "deduped_full_msa = list(dict.fromkeys(full_msa))\n",
    "total_msa_size = len(deduped_full_msa)\n",
    "print(f'\\n{total_msa_size} Sequences Found in Total\\n')\n",
    "\n",
    "aa_map = {restype: i for i, restype in enumerate('ABCDEFGHIJKLMNOPQRSTUVWXYZ-')}\n",
    "msa_arr = np.array([[aa_map[aa] for aa in seq] for seq in deduped_full_msa])\n",
    "num_alignments, num_res = msa_arr.shape\n",
    "\n",
    "fig = plt.figure(figsize=(12, 3))\n",
    "plt.title('Per-Residue Count of Non-Gap Amino Acids in the MSA')\n",
    "plt.plot(np.sum(msa_arr != aa_map['-'], axis=0), color='black')\n",
    "plt.ylabel('Non-Gap Count')\n",
    "plt.yticks(range(0, num_alignments + 1, max(1, int(num_alignments / 3))))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "cellView": "form",
    "id": "XUo6foMQxwS2"
   },
   "outputs": [],
   "source": [
    "#@title Run AlphaFold and download prediction\n",
    "\n",
    "#@markdown Once this cell has been executed, a zip-archive with \n",
    "#@markdown the obtained prediction will be automatically downloaded \n",
    "#@markdown to your computer.\n",
    "\n",
    "# --- Run the model ---\n",
    "model_names = ['model_1', 'model_2', 'model_3', 'model_4', 'model_5', 'model_2_ptm']\n",
    "\n",
    "def _placeholder_template_feats(num_templates_, num_res_):\n",
    "  return {\n",
    "      'template_aatype': np.zeros([num_templates_, num_res_, 22], np.float32),\n",
    "      'template_all_atom_masks': np.zeros([num_templates_, num_res_, 37, 3], np.float32),\n",
    "      'template_all_atom_positions': np.zeros([num_templates_, num_res_, 37], np.float32),\n",
    "      'template_domain_names': np.zeros([num_templates_], np.float32),\n",
    "      'template_sum_probs': np.zeros([num_templates_], np.float32),\n",
    "  }\n",
    "\n",
    "output_dir = 'prediction'\n",
    "os.makedirs(output_dir, exist_ok=True)\n",
    "\n",
    "plddts = {}\n",
    "pae_outputs = {}\n",
    "unrelaxed_proteins = {}\n",
    "\n",
    "with tqdm.notebook.tqdm(total=len(model_names) + 1, bar_format=TQDM_BAR_FORMAT) as pbar:\n",
    "  for model_name in model_names:\n",
    "    pbar.set_description(f'Running {model_name}')\n",
    "    num_templates = 0\n",
    "    num_res = len(sequence)\n",
    "\n",
    "    feature_dict = {}\n",
    "    feature_dict.update(pipeline.make_sequence_features(sequence, 'test', num_res))\n",
    "    feature_dict.update(pipeline.make_msa_features(msas, deletion_matrices=deletion_matrices))\n",
    "    feature_dict.update(_placeholder_template_feats(num_templates, num_res))\n",
    "\n",
    "    cfg = config.model_config(model_name)\n",
    "    params = data.get_model_haiku_params(model_name, './alphafold/data')\n",
    "    model_runner = model.RunModel(cfg, params)\n",
    "    processed_feature_dict = model_runner.process_features(feature_dict,\n",
    "                                                           random_seed=0)\n",
    "    prediction_result = model_runner.predict(processed_feature_dict)\n",
    "\n",
    "    mean_plddt = prediction_result['plddt'].mean()\n",
    "\n",
    "    if 'predicted_aligned_error' in prediction_result:\n",
    "      pae_outputs[model_name] = (\n",
    "          prediction_result['predicted_aligned_error'],\n",
    "          prediction_result['max_predicted_aligned_error']\n",
    "      )\n",
    "    else:\n",
    "      # Get the pLDDT confidence metrics. Do not put pTM models here as they\n",
    "      # should never get selected.\n",
    "      plddts[model_name] = prediction_result['plddt']\n",
    "\n",
    "    # Set the b-factors to the per-residue plddt.\n",
    "    final_atom_mask = prediction_result['structure_module']['final_atom_mask']\n",
    "    b_factors = prediction_result['plddt'][:, None] * final_atom_mask\n",
    "    unrelaxed_protein = protein.from_prediction(processed_feature_dict,\n",
    "                                                prediction_result,\n",
    "                                                b_factors=b_factors)\n",
    "    unrelaxed_proteins[model_name] = unrelaxed_protein\n",
    "\n",
    "    # Delete unused outputs to save memory.\n",
    "    del model_runner\n",
    "    del params\n",
    "    del prediction_result\n",
    "    pbar.update(n=1)\n",
    "\n",
    "  # --- AMBER relax the best model ---\n",
    "  pbar.set_description(f'AMBER relaxation')\n",
    "  amber_relaxer = relax.AmberRelaxation(\n",
    "      max_iterations=0,\n",
    "      tolerance=2.39,\n",
    "      stiffness=10.0,\n",
    "      exclude_residues=[],\n",
    "      max_outer_iterations=20)\n",
    "  # Find the best model according to the mean pLDDT.\n",
    "  best_model_name = max(plddts.keys(), key=lambda x: plddts[x].mean())\n",
    "  relaxed_pdb, _, _ = amber_relaxer.process(\n",
    "      prot=unrelaxed_proteins[best_model_name])\n",
    "  pbar.update(n=1)  # Finished AMBER relax.\n",
    "\n",
    "# Construct multiclass b-factors to indicate confidence bands\n",
    "# 0=very low, 1=low, 2=confident, 3=very high\n",
    "banded_b_factors = []\n",
    "for plddt in plddts[best_model_name]:\n",
    "  for idx, (min_val, max_val, _) in enumerate(PLDDT_BANDS):\n",
    "    if plddt >= min_val and plddt <= max_val:\n",
    "      banded_b_factors.append(idx)\n",
    "      break\n",
    "banded_b_factors = np.array(banded_b_factors)[:, None] * final_atom_mask\n",
    "to_visualize_pdb = utils.overwrite_b_factors(relaxed_pdb, banded_b_factors)\n",
    "\n",
    "\n",
    "# Write out the prediction\n",
    "pred_output_path = os.path.join(output_dir, 'selected_prediction.pdb')\n",
    "with open(pred_output_path, 'w') as f:\n",
    "  f.write(relaxed_pdb)\n",
    "\n",
    "\n",
    "# --- Visualise the prediction & confidence ---\n",
    "show_sidechains = True\n",
    "def plot_plddt_legend():\n",
    "  \"\"\"Plots the legend for pLDDT.\"\"\"\n",
    "  thresh = [\n",
    "            'Very low (pLDDT < 50)',\n",
    "            'Low (70 > pLDDT > 50)',\n",
    "            'Confident (90 > pLDDT > 70)',\n",
    "            'Very high (pLDDT > 90)']\n",
    "\n",
    "  colors = [x[2] for x in PLDDT_BANDS]\n",
    "\n",
    "  plt.figure(figsize=(2, 2))\n",
    "  for c in colors:\n",
    "    plt.bar(0, 0, color=c)\n",
    "  plt.legend(thresh, frameon=False, loc='center', fontsize=20)\n",
    "  plt.xticks([])\n",
    "  plt.yticks([])\n",
    "  ax = plt.gca()\n",
    "  ax.spines['right'].set_visible(False)\n",
    "  ax.spines['top'].set_visible(False)\n",
    "  ax.spines['left'].set_visible(False)\n",
    "  ax.spines['bottom'].set_visible(False)\n",
    "  plt.title('Model Confidence', fontsize=20, pad=20)\n",
    "  return plt\n",
    "\n",
    "# Color the structure by per-residue pLDDT\n",
    "color_map = {i: bands[2] for i, bands in enumerate(PLDDT_BANDS)}\n",
    "view = py3Dmol.view(width=800, height=600)\n",
    "view.addModelsAsFrames(to_visualize_pdb)\n",
    "style = {'cartoon': {\n",
    "    'colorscheme': {\n",
    "        'prop': 'b',\n",
    "        'map': color_map}\n",
    "        }}\n",
    "if show_sidechains:\n",
    "  style['stick'] = {}\n",
    "view.setStyle({'model': -1}, style)\n",
    "view.zoomTo()\n",
    "\n",
    "grid = GridspecLayout(1, 2)\n",
    "out = Output()\n",
    "with out:\n",
    "  view.show()\n",
    "grid[0, 0] = out\n",
    "\n",
    "out = Output()\n",
    "with out:\n",
    "  plot_plddt_legend().show()\n",
    "grid[0, 1] = out\n",
    "\n",
    "display.display(grid)\n",
    "\n",
    "# Display pLDDT and predicted aligned error (if output by the model).\n",
    "if pae_outputs:\n",
    "  num_plots = 2\n",
    "else:\n",
    "  num_plots = 1\n",
    "\n",
    "plt.figure(figsize=[8 * num_plots, 6])\n",
    "plt.subplot(1, num_plots, 1)\n",
    "plt.plot(plddts[best_model_name])\n",
    "plt.title('Predicted LDDT')\n",
    "plt.xlabel('Residue')\n",
    "plt.ylabel('pLDDT')\n",
    "\n",
    "if num_plots == 2:\n",
    "  plt.subplot(1, 2, 2)\n",
    "  pae, max_pae = list(pae_outputs.values())[0]\n",
    "  plt.imshow(pae, vmin=0., vmax=max_pae, cmap='Greens_r')\n",
    "  plt.colorbar(fraction=0.046, pad=0.04)\n",
    "  plt.title('Predicted Aligned Error')\n",
    "  plt.xlabel('Scored residue')\n",
    "  plt.ylabel('Aligned residue')\n",
    "\n",
    "# Save pLDDT and predicted aligned error (if it exists)\n",
    "pae_output_path = os.path.join(output_dir, 'predicted_aligned_error.json')\n",
    "if pae_outputs:\n",
    "  # Save predicted aligned error in the same format as the AF EMBL DB\n",
    "  rounded_errors = np.round(pae.astype(np.float64), decimals=1)\n",
    "  indices = np.indices((len(rounded_errors), len(rounded_errors))) + 1\n",
    "  indices_1 = indices[0].flatten().tolist()\n",
    "  indices_2 = indices[1].flatten().tolist()\n",
    "  pae_data = json.dumps([{\n",
    "      'residue1': indices_1,\n",
    "      'residue2': indices_2,\n",
    "      'distance': rounded_errors.flatten().tolist(),\n",
    "      'max_predicted_aligned_error': max_pae.item()\n",
    "  }],\n",
    "                        indent=None,\n",
    "                        separators=(',', ':'))\n",
    "  with open(pae_output_path, 'w') as f:\n",
    "    f.write(pae_data)\n",
    "\n",
    "\n",
    "# --- Download the predictions ---\n",
    "!zip -q -r {output_dir}.zip {output_dir}\n",
    "files.download(f'{output_dir}.zip')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "lUQAn5LYC5n4"
   },
   "source": [
    "### Interpreting the prediction\n",
    "\n",
    "Please see the [AlphaFold methods paper](https://www.nature.com/articles/s41586-021-03819-2) and the [AlphaFold predictions of the human proteome paper](https://www.nature.com/articles/s41586-021-03828-1), as well as [our FAQ](https://alphafold.ebi.ac.uk/faq) on how to interpret AlphaFold predictions."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "jeb2z8DIA4om"
   },
   "source": [
    "## FAQ & Troubleshooting\n",
    "\n",
    "\n",
    "*   How do I get a predicted protein structure for my protein?\n",
    "    *   Click on the _Connect_ button on the top right to get started.\n",
    "    *   Paste the amino acid sequence of your protein (without any headers) into the “Enter the amino acid sequence to fold”.\n",
    "    *   Run all cells in the Colab, either by running them individually (with the play button on the left side) or via _Runtime_ > _Run all._\n",
    "    *   The predicted protein structure will be downloaded once all cells have been executed. Note: This can take minutes to hours - see below.\n",
    "*   How long will this take?\n",
    "    *   Downloading the AlphaFold source code can take up to a few minutes.\n",
    "    *   Downloading and installing the third-party software can take up to a few minutes.\n",
    "    *   The search against genetic databases can take minutes to hours.\n",
    "    *   Running AlphaFold and generating the prediction can take minutes to hours, depending on the length of your protein and on which GPU-type Colab has assigned you.\n",
    "*   My Colab no longer seems to be doing anything, what should I do?\n",
    "    *   Some steps may take minutes to hours to complete.\n",
    "    *   If nothing happens or if you receive an error message, try restarting your Colab runtime via _Runtime_ > _Restart runtime_.\n",
    "    *   If this doesn’t help, try resetting your Colab runtime via _Runtime_ > _Factory reset runtime_.\n",
    "*   How does this compare to the open-source version of AlphaFold?\n",
    "    *   This Colab version of AlphaFold searches a selected portion of the BFD dataset and currently doesn’t use templates, so its accuracy is reduced in comparison to the full version of AlphaFold that is described in the [AlphaFold paper](https://doi.org/10.1038/s41586-021-03819-2) and [Github repo](https://github.com/deepmind/alphafold/) (the full version is available via the inference script).\n",
    "*   What is a Colab?\n",
    "    *   See the [Colab FAQ](https://research.google.com/colaboratory/faq.html).\n",
    "*   I received a warning “Notebook requires high RAM”, what do I do?\n",
    "    *   The resources allocated to your Colab vary. See the [Colab FAQ](https://research.google.com/colaboratory/faq.html) for more details.\n",
    "    *   You can execute the Colab nonetheless.\n",
    "*   I received an error “Colab CPU runtime not supported” or “No GPU/TPU found”, what do I do?\n",
    "    *   Colab CPU runtime is not supported. Try changing your runtime via _Runtime_ > _Change runtime type_ > _Hardware accelerator_ > _GPU_.\n",
    "    *   The type of GPU allocated to your Colab varies. See the [Colab FAQ](https://research.google.com/colaboratory/faq.html) for more details.\n",
    "    *   If you receive “Cannot connect to GPU backend”, you can try again later to see if Colab allocates you a GPU.\n",
    "    *   [Colab Pro](https://colab.research.google.com/signup) offers priority access to GPUs. \n",
    "*   Does this tool install anything on my computer?\n",
    "    *   No, everything happens in the cloud on Google Colab.\n",
    "    *   At the end of the Colab execution a zip-archive with the obtained prediction will be automatically downloaded to your computer.\n",
    "*   How should I share feedback and bug reports?\n",
    "    *   Please share any feedback and bug reports as an [issue](https://github.com/deepmind/alphafold/issues) on Github.\n",
    "\n",
    "\n",
    "## Related work\n",
    "\n",
    "Take a look at these Colab notebooks provided by the community (please note that these notebooks may vary from our validated AlphaFold system and we cannot guarantee their accuracy):\n",
    "\n",
    "*   The [ColabFold AlphaFold2 notebook](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) by Sergey Ovchinnikov, Milot Mirdita and Martin Steinegger, which uses an API hosted at the Södinglab based on the MMseqs2 server ([Mirdita et al. 2019, Bioinformatics](https://academic.oup.com/bioinformatics/article/35/16/2856/5280135)) for the multiple sequence alignment creation.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "YfPhvYgKC81B"
   },
   "source": [
    "# License and Disclaimer\n",
    "\n",
    "This is not an officially-supported Google product.\n",
    "\n",
    "This Colab notebook and other information provided is for theoretical modelling only, caution should be exercised in its use. It is provided ‘as-is’ without any warranty of any kind, whether expressed or implied. Information is not intended to be a substitute for professional medical advice, diagnosis, or treatment, and does not constitute medical or other professional advice.\n",
    "\n",
    "Copyright 2021 DeepMind Technologies Limited.\n",
    "\n",
    "\n",
    "## AlphaFold Code License\n",
    "\n",
    "Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.\n",
    "\n",
    "Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.\n",
    "\n",
    "## Model Parameters License\n",
    "\n",
    "The AlphaFold parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode\n",
    "\n",
    "\n",
    "## Third-party software\n",
    "\n",
    "Use of the third-party software, libraries or code referred to in the [Acknowledgements section](https://github.com/deepmind/alphafold/#acknowledgements) in the AlphaFold README may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code is subject to any such terms and you should check that you can comply with any applicable restrictions or terms and conditions before use.\n",
    "\n",
    "\n",
    "## Mirrored Databases\n",
    "\n",
    "The following databases have been mirrored by DeepMind, and are available with reference to the following:\n",
    "* UniRef90: v2021\\_03 (unmodified), by The UniProt Consortium, available under a [Creative Commons Attribution-NoDerivatives 4.0 International License](http://creativecommons.org/licenses/by-nd/4.0/).\n",
    "* MGnify: v2019\\_05 (unmodified), by Mitchell AL et al., available free of all copyright restrictions and made fully and freely available for both non-commercial and commercial use under [CC0 1.0 Universal (CC0 1.0) Public Domain Dedication](https://creativecommons.org/publicdomain/zero/1.0/).\n",
    "* BFD: (modified), by Steinegger M. and Söding J., modified by DeepMind, available under a [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by/4.0/). See the Methods section of the [AlphaFold proteome paper](https://www.nature.com/articles/s41586-021-03828-1) for details."
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "name": "AlphaFold.ipynb"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "name": "python3"
  },
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}