README.md 30.9 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
![header](imgs/header.jpg)

# AlphaFold

This package provides an implementation of the inference pipeline of AlphaFold
6
7
v2.0. For simplicity, we refer to this model as AlphaFold throughout the rest of
this document.
Augustin-Zidek's avatar
Augustin-Zidek committed
8

Augustin Zidek's avatar
Augustin Zidek committed
9
10
11
12
We also provide:

1.  An implementation of AlphaFold-Multimer. This represents a work in progress
    and AlphaFold-Multimer isn't expected to be as stable as our monomer
13
14
    AlphaFold system. [Read the guide](#updating-existing-installation) for how
    to upgrade and update code.
Augustin Zidek's avatar
Augustin Zidek committed
15
16
17
18
19
20
21
22
23
24
2.  The [technical note](docs/technical_note_v2.3.0.md) containing the models
    and inference procedure for an updated AlphaFold v2.3.0.
3.  A [CASP15 baseline](docs/casp15_predictions.zip) set of predictions along
    with documentation of any manual interventions performed.

Any publication that discloses findings arising from using this source code or
the model parameters should [cite](#citing-this-work) the
[AlphaFold paper](https://doi.org/10.1038/s41586-021-03819-2) and, if
applicable, the
[AlphaFold-Multimer paper](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1).
25
26

Please also refer to the
27
28
29
30
[Supplementary Information](https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM1_ESM.pdf)
for a detailed description of the method.

**You can use a slightly simplified version of AlphaFold with
Augustin Zidek's avatar
Augustin Zidek committed
31
[this Colab notebook](https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb)**
32
or community-supported versions (see below).
Augustin-Zidek's avatar
Augustin-Zidek committed
33

34
35
36
If you have any questions, please contact the AlphaFold team at
[alphafold@deepmind.com](mailto:alphafold@deepmind.com).

Augustin-Zidek's avatar
Augustin-Zidek committed
37
38
39
40
![CASP14 predictions](imgs/casp14_predictions.gif)

## First time setup

41
42
43
You will need a machine running Linux, AlphaFold does not support other
operating systems.

Augustin-Zidek's avatar
Augustin-Zidek committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
The following steps are required in order to run AlphaFold:

1.  Install [Docker](https://www.docker.com/).
    *   Install
        [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
        for GPU support.
    *   Setup running
        [Docker as a non-root user](https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user).
1.  Download genetic databases (see below).
1.  Download model parameters (see below).
1.  Check that AlphaFold will be able to use a GPU by running:

    ```bash
    docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
    ```

    The output of this command should show a list of your GPUs. If it doesn't,
    check if you followed all steps correctly when setting up the
    [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
    or take a look at the following
    [NVIDIA Docker issue](https://github.com/NVIDIA/nvidia-docker/issues/1447#issuecomment-801479573).

Augustin Zidek's avatar
Augustin Zidek committed
66
67
68
If you wish to run AlphaFold using Singularity (a common containerization
platform on HPC systems) we recommend using some of the third party Singularity
setups as linked in https://github.com/deepmind/alphafold/issues/10 or
69
70
https://github.com/deepmind/alphafold/issues/24.

Augustin-Zidek's avatar
Augustin-Zidek committed
71
72
### Genetic databases

73
This step requires `aria2c` to be installed on your machine.
Augustin-Zidek's avatar
Augustin-Zidek committed
74
75
76
77

AlphaFold needs multiple genetic (sequence) databases to run:

*   [BFD](https://bfd.mmseqs.com/),
78
*   [MGnify](https://www.ebi.ac.uk/metagenomics/),
Augustin-Zidek's avatar
Augustin-Zidek committed
79
*   [PDB70](http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/),
80
81
*   [PDB](https://www.rcsb.org/) (structures in the mmCIF format),
*   [PDB seqres](https://www.rcsb.org/) – only for AlphaFold-Multimer,
Augustin Zidek's avatar
Augustin Zidek committed
82
*   [UniRef30 (FKA UniClust30)](https://uniclust.mmseqs.com/),
83
84
*   [UniProt](https://www.uniprot.org/uniprot/) – only for AlphaFold-Multimer,
*   [UniRef90](https://www.uniprot.org/help/uniref).
Augustin-Zidek's avatar
Augustin-Zidek committed
85
86

We provide a script `scripts/download_all_data.sh` that can be used to download
87
88
89
and set up all of these databases:

*   Default:
Augustin-Zidek's avatar
Augustin-Zidek committed
90

91
92
93
94
95
96
97
98
99
100
101
102
103
    ```bash
    scripts/download_all_data.sh <DOWNLOAD_DIR>
    ```

    will download the full databases.

*   With `reduced_dbs`:

    ```bash
    scripts/download_all_data.sh <DOWNLOAD_DIR> reduced_dbs
    ```

    will download a reduced version of the databases to be used with the
104
    `reduced_dbs` database preset.
105

Augustin Zidek's avatar
Augustin Zidek committed
106
:ledger: **Note: The download directory `<DOWNLOAD_DIR>` should *not* be a
107
108
109
subdirectory in the AlphaFold repository directory.** If it is, the Docker build
will be slow as the large databases will be copied during the image creation.

Augustin Zidek's avatar
Augustin Zidek committed
110
We don't provide exactly the database versions used in CASP14 – see the
111
112
[note on reproducibility](#note-on-casp14-reproducibility). Some of the
databases are mirrored for speed, see [mirrored databases](#mirrored-databases).
113
114

:ledger: **Note: The total download size for the full databases is around 415 GB
Augustin Zidek's avatar
Augustin Zidek committed
115
and the total size when unzipped is 2.62 TB. Please make sure you have a large
116
117
enough hard drive space, bandwidth and time to download. We recommend using an
SSD for better genetic search performance.**
Augustin-Zidek's avatar
Augustin-Zidek committed
118

Augustin Zidek's avatar
Augustin Zidek committed
119
120
121
122
123
:ledger: **Note: If the download directory and datasets don't have full read and
write permissions, it can cause errors with the MSA tools, with opaque
(external) error messages. Please ensure the required permissions are applied,
e.g. with the `sudo chmod 755 --recursive "$DOWNLOAD_DIR"` command.**

124
125
The `download_all_data.sh` script will also download the model parameter files.
Once the script has finished, you should have the following directory structure:
Augustin-Zidek's avatar
Augustin-Zidek committed
126
127

```
Augustin Zidek's avatar
Augustin Zidek committed
128
129
$DOWNLOAD_DIR/                             # Total: ~ 2.62 TB (download: 556 GB)
    bfd/                                   # ~ 1.8 TB (download: 271.6 GB)
Augustin-Zidek's avatar
Augustin-Zidek committed
130
        # 6 files.
Augustin Zidek's avatar
Augustin Zidek committed
131
132
133
    mgnify/                                # ~ 120 GB (download: 67 GB)
        mgy_clusters_2022_05.fa
    params/                                # ~ 5.3 GB (download: 5.3 GB)
Augustin-Zidek's avatar
Augustin-Zidek committed
134
135
        # 5 CASP14 models,
        # 5 pTM models,
136
        # 5 AlphaFold-Multimer models,
Augustin-Zidek's avatar
Augustin-Zidek committed
137
        # LICENSE,
138
        # = 16 files.
Augustin-Zidek's avatar
Augustin-Zidek committed
139
140
    pdb70/                                 # ~ 56 GB (download: 19.5 GB)
        # 9 files.
Augustin Zidek's avatar
Augustin Zidek committed
141
    pdb_mmcif/                             # ~ 238 GB (download: 43 GB)
Augustin-Zidek's avatar
Augustin-Zidek committed
142
        mmcif_files/
Augustin Zidek's avatar
Augustin Zidek committed
143
            # About 199,000 .cif files.
Augustin-Zidek's avatar
Augustin-Zidek committed
144
        obsolete.dat
145
146
    pdb_seqres/                            # ~ 0.2 GB (download: 0.2 GB)
        pdb_seqres.txt
Augustin Zidek's avatar
Augustin Zidek committed
147
    small_bfd/                             # ~ 17 GB (download: 9.6 GB)
148
        bfd-first_non_consensus_sequences.fasta
Augustin Zidek's avatar
Augustin Zidek committed
149
150
151
    uniref30/                              # ~ 206 GB (download: 52.5 GB)
        # 7 files.
    uniprot/                               # ~ 105 GB (download: 53 GB)
152
        uniprot.fasta
Augustin Zidek's avatar
Augustin Zidek committed
153
    uniref90/                              # ~ 67 GB (download: 34 GB)
Augustin-Zidek's avatar
Augustin-Zidek committed
154
155
156
        uniref90.fasta
```

157
`bfd/` is only downloaded if you download the full databases, and `small_bfd/`
158
159
is only downloaded if you download the reduced databases.

Augustin-Zidek's avatar
Augustin-Zidek committed
160
161
162
### Model parameters

While the AlphaFold code is licensed under the Apache 2.0 License, the AlphaFold
Augustin Zidek's avatar
Augustin Zidek committed
163
164
165
parameters and CASP15 prediction data are made available under the terms of the
CC BY 4.0 license. Please see the [Disclaimer](#license-and-disclaimer) below
for more detail.
Augustin-Zidek's avatar
Augustin-Zidek committed
166
167

The AlphaFold parameters are available from
Augustin Zidek's avatar
Augustin Zidek committed
168
https://storage.googleapis.com/alphafold/alphafold_params_2022-12-06.tar, and
Augustin-Zidek's avatar
Augustin-Zidek committed
169
170
171
172
173
174
175
are downloaded as part of the `scripts/download_all_data.sh` script. This script
will download parameters for:

*   5 models which were used during CASP14, and were extensively validated for
    structure prediction quality (see Jumper et al. 2021, Suppl. Methods 1.12
    for details).
*   5 pTM models, which were fine-tuned to produce pTM (predicted TM-score) and
176
177
178
179
180
    (PAE) predicted aligned error values alongside their structure predictions
    (see Jumper et al. 2021, Suppl. Methods 1.9.7 for details).
*   5 AlphaFold-Multimer models that produce pTM and PAE values alongside their
    structure predictions.

Augustin Zidek's avatar
Augustin Zidek committed
181
### Updating existing installation
182

Augustin Zidek's avatar
Augustin Zidek committed
183
184
185
186
If you have a previous version you can either reinstall fully from scratch
(remove everything and run the setup from scratch) or you can do an incremental
update that will be significantly faster but will require a bit more work. Make
sure you follow these steps in the exact order they are listed below:
187
188

1.  **Update the code.**
Augustin Zidek's avatar
Augustin Zidek committed
189
190
191
192
    *   Go to the directory with the cloned AlphaFold repository and run `git
        fetch origin main` to get all code updates.
1.  **Update the UniProt, UniRef, MGnify and PDB seqres databases.**
    *   Remove `<DOWNLOAD_DIR>/uniprot`.
193
    *   Run `scripts/download_uniprot.sh <DOWNLOAD_DIR>`.
Augustin Zidek's avatar
Augustin Zidek committed
194
195
196
197
198
199
    *   Remove `<DOWNLOAD_DIR>/uniclust30`.
    *   Run `scripts/download_uniref30.sh <DOWNLOAD_DIR>`.
    *   Remove `<DOWNLOAD_DIR>/uniref90`.
    *   Run `scripts/download_uniref90.sh <DOWNLOAD_DIR>`.
    *   Remove `<DOWNLOAD_DIR>/mgnify`.
    *   Run `scripts/download_mgnify.sh <DOWNLOAD_DIR>`.
200
201
202
203
204
205
206
207
208
209
210
211
    *   Remove `<DOWNLOAD_DIR>/pdb_mmcif`. It is needed to have PDB SeqRes and
        PDB from exactly the same date. Failure to do this step will result in
        potential errors when searching for templates when running
        AlphaFold-Multimer.
    *   Run `scripts/download_pdb_mmcif.sh <DOWNLOAD_DIR>`.
    *   Run `scripts/download_pdb_seqres.sh <DOWNLOAD_DIR>`.
1.  **Update the model parameters.**
    *   Remove the old model parameters in `<DOWNLOAD_DIR>/params`.
    *   Download new model parameters using
        `scripts/download_alphafold_params.sh <DOWNLOAD_DIR>`.
1.  **Follow [Running AlphaFold](#running-alphafold).**

Augustin Zidek's avatar
Augustin Zidek committed
212
#### Using deprecated model weights
213

Augustin Zidek's avatar
Augustin Zidek committed
214
To use the deprecated v2.2.0 AlphaFold-Multimer model weights:
215

Augustin Zidek's avatar
Augustin Zidek committed
216
217
218
219
1.  Change `SOURCE_URL` in `scripts/download_alphafold_params.sh` to
    `https://storage.googleapis.com/alphafold/alphafold_params_2022-03-02.tar`,
    and download the old parameters.
2.  Change the `_v3` to `_v2` in the multimer `MODEL_PRESETS` in `config.py`.
Augustin-Zidek's avatar
Augustin-Zidek committed
220

221
222
223
To use the deprecated v2.1.0 AlphaFold-Multimer model weights:

1.  Change `SOURCE_URL` in `scripts/download_alphafold_params.sh` to
Augustin Zidek's avatar
Augustin Zidek committed
224
225
226
    `https://storage.googleapis.com/alphafold/alphafold_params_2022-01-19.tar`,
    and download the old parameters.
2.  Remove the `_v3` in the multimer `MODEL_PRESETS` in `config.py`.
227

Augustin-Zidek's avatar
Augustin-Zidek committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
## Running AlphaFold

**The simplest way to run AlphaFold is using the provided Docker script.** This
was tested on Google Cloud with a machine using the `nvidia-gpu-cloud-image`
with 12 vCPUs, 85 GB of RAM, a 100 GB boot disk, the databases on an additional
3 TB disk, and an A100 GPU.

1.  Clone this repository and `cd` into it.

    ```bash
    git clone https://github.com/deepmind/alphafold.git
    ```

1.  Build the Docker image:

    ```bash
    docker build -f docker/Dockerfile -t alphafold .
    ```

247
248
249
250
251
252
253
254
255
256
    If you encounter the following error:

    ```
    W: GPG error: https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC
    E: The repository 'https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 InRelease' is not signed.
    ```

    use the workaround described in
    https://github.com/deepmind/alphafold/issues/463#issuecomment-1124881779.

Augustin-Zidek's avatar
Augustin-Zidek committed
257
258
259
260
261
262
263
264
265
1.  Install the `run_docker.py` dependencies. Note: You may optionally wish to
    create a
    [Python Virtual Environment](https://docs.python.org/3/tutorial/venv.html)
    to prevent conflicts with your system's Python environment.

    ```bash
    pip3 install -r docker/requirements.txt
    ```

266
1.  Make sure that the output directory exists (the default is `/tmp/alphafold`)
Augustin Zidek's avatar
Augustin Zidek committed
267
    and that you have sufficient permissions to write into it.
268

269
270
271
272
273
274
275
1.  Run `run_docker.py` pointing to a FASTA file containing the protein
    sequence(s) for which you wish to predict the structure. If you are
    predicting the structure of a protein that is already in PDB and you wish to
    avoid using it as a template, then `max_template_date` must be set to be
    before the release date of the structure. You must also provide the path to
    the directory containing the downloaded databases. For example, for the
    T1050 CASP14 target:
Augustin-Zidek's avatar
Augustin-Zidek committed
276
277

    ```bash
278
279
280
281
    python3 docker/run_docker.py \
      --fasta_paths=T1050.fasta \
      --max_template_date=2020-05-14 \
      --data_dir=$DOWNLOAD_DIR
Augustin-Zidek's avatar
Augustin-Zidek committed
282
283
284
285
286
287
288
289
    ```

    By default, Alphafold will attempt to use all visible GPU devices. To use a
    subset, specify a comma-separated list of GPU UUID(s) or index(es) using the
    `--gpu_devices` flag. See
    [GPU enumeration](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html#gpu-enumeration)
    for more details.

Augustin Zidek's avatar
Augustin Zidek committed
290
291
1.  You can control which AlphaFold model to run by adding the `--model_preset=`
    flag. We provide the following models:
292

Augustin Zidek's avatar
Augustin Zidek committed
293
294
    *   **monomer**: This is the original model used at CASP14 with no
        ensembling.
295

Augustin Zidek's avatar
Augustin Zidek committed
296
297
298
299
    *   **monomer\_casp14**: This is the original model used at CASP14 with
        `num_ensemble=8`, matching our CASP14 configuration. This is largely
        provided for reproducibility as it is 8x more computationally expensive
        for limited accuracy gain (+0.1 average GDT gain on CASP14 domains).
300

Augustin Zidek's avatar
Augustin Zidek committed
301
302
303
    *   **monomer\_ptm**: This is the original CASP14 model fine tuned with the
        pTM head, providing a pairwise confidence measure. It is slightly less
        accurate than the normal monomer model.
304

Augustin Zidek's avatar
Augustin Zidek committed
305
306
307
    *   **multimer**: This is the [AlphaFold-Multimer](#citing-this-work) model.
        To use this model, provide a multi-sequence FASTA file. In addition, the
        UniProt database should have been downloaded.
Augustin-Zidek's avatar
Augustin-Zidek committed
308

309
310
311
1.  You can control MSA speed/quality tradeoff by adding
    `--db_preset=reduced_dbs` or `--db_preset=full_dbs` to the run command. We
    provide the following presets:
Augustin-Zidek's avatar
Augustin-Zidek committed
312

313
    *   **reduced\_dbs**: This preset is optimized for speed and lower hardware
Augustin Zidek's avatar
Augustin Zidek committed
314
315
        requirements. It runs with a reduced version of the BFD database. It
        requires 8 CPU cores (vCPUs), 8 GB of RAM, and 600 GB of disk space.
316
317
318
319
320

    *   **full\_dbs**: This runs with all genetic databases used at CASP14.

    Running the command above with the `monomer` model preset and the
    `reduced_dbs` data preset would look like this:
Augustin-Zidek's avatar
Augustin-Zidek committed
321
322

    ```bash
323
324
325
326
327
328
    python3 docker/run_docker.py \
      --fasta_paths=T1050.fasta \
      --max_template_date=2020-05-14 \
      --model_preset=monomer \
      --db_preset=reduced_dbs \
      --data_dir=$DOWNLOAD_DIR
Augustin-Zidek's avatar
Augustin-Zidek committed
329
330
    ```

331
332
333
334
335
336
337
### Running AlphaFold-Multimer

All steps are the same as when running the monomer system, but you will have to

*   provide an input fasta with multiple sequences,
*   set `--model_preset=multimer`,

338
An example that folds a protein complex `multimer.fasta`:
339
340
341

```bash
python3 docker/run_docker.py \
342
  --fasta_paths=multimer.fasta \
343
344
345
346
347
  --max_template_date=2020-05-14 \
  --model_preset=multimer \
  --data_dir=$DOWNLOAD_DIR
```

348
By default the multimer system will run 5 seeds per model (25 total predictions)
Augustin Zidek's avatar
Augustin Zidek committed
349
for a small drop in accuracy you may wish to run a single seed per model. This
350
351
352
can be done via the `--num_multimer_predictions_per_model` flag, e.g. set it to
`--num_multimer_predictions_per_model=1` to run a single seed per model.

353
354
355
### AlphaFold prediction speed

The table below reports prediction runtimes for proteins of various lengths. We
356
357
358
359
360
361
only measure unrelaxed structure prediction with three recycles while
excluding runtimes from MSA and template search. When running
`docker/run_docker.py` with `--benchmark=true`, this runtime is stored in
`timings.json`. All runtimes are from a single A100 NVIDIA GPU. Prediction
speed on A100 for smaller structures can be improved by increasing
`global_config.subbatch_size` in `alphafold/model/config.py`.
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

No. residues | Prediction time (s)
-----------: | ------------------:
100          | 4.9
200          | 7.7
300          | 13
400          | 18
500          | 29
600          | 36
700          | 53
800          | 60
900          | 91
1,000        | 96
1,100        | 140
1,500        | 280
2,000        | 450
2,500        | 969
3,000        | 1,240
3,500        | 2,465
4,000        | 5,660
4,500        | 12,475
5,000        | 18,824

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
### Examples

Below are examples on how to use AlphaFold in different scenarios.

#### Folding a monomer

Say we have a monomer with the sequence `<SEQUENCE>`. The input fasta should be:

```fasta
>sequence_name
<SEQUENCE>
```

Then run the following command:

```bash
python3 docker/run_docker.py \
  --fasta_paths=monomer.fasta \
  --max_template_date=2021-11-01 \
  --model_preset=monomer \
  --data_dir=$DOWNLOAD_DIR
```

#### Folding a homomer

Augustin Zidek's avatar
Augustin Zidek committed
410
411
Say we have a homomer with 3 copies of the same sequence `<SEQUENCE>`. The input
fasta should be:
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

```fasta
>sequence_1
<SEQUENCE>
>sequence_2
<SEQUENCE>
>sequence_3
<SEQUENCE>
```

Then run the following command:

```bash
python3 docker/run_docker.py \
  --fasta_paths=homomer.fasta \
  --max_template_date=2021-11-01 \
  --model_preset=multimer \
  --data_dir=$DOWNLOAD_DIR
```

#### Folding a heteromer

Augustin Zidek's avatar
Augustin Zidek committed
434
435
Say we have an A2B3 heteromer, i.e. with 2 copies of `<SEQUENCE A>` and 3 copies
of `<SEQUENCE B>`. The input fasta should be:
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

```fasta
>sequence_1
<SEQUENCE A>
>sequence_2
<SEQUENCE A>
>sequence_3
<SEQUENCE B>
>sequence_4
<SEQUENCE B>
>sequence_5
<SEQUENCE B>
```

Then run the following command:

```bash
python3 docker/run_docker.py \
  --fasta_paths=heteromer.fasta \
  --max_template_date=2021-11-01 \
  --model_preset=multimer \
  --data_dir=$DOWNLOAD_DIR
```

#### Folding multiple monomers one after another

Say we have a two monomers, `monomer1.fasta` and `monomer2.fasta`.

We can fold both sequentially by using the following command:

```bash
python3 docker/run_docker.py \
  --fasta_paths=monomer1.fasta,monomer2.fasta \
  --max_template_date=2021-11-01 \
  --model_preset=monomer \
  --data_dir=$DOWNLOAD_DIR
```

#### Folding multiple multimers one after another

476
Say we have a two multimers, `multimer1.fasta` and `multimer2.fasta`.
477
478
479
480
481
482
483
484
485
486
487

We can fold both sequentially by using the following command:

```bash
python3 docker/run_docker.py \
  --fasta_paths=multimer1.fasta,multimer2.fasta \
  --max_template_date=2021-11-01 \
  --model_preset=multimer \
  --data_dir=$DOWNLOAD_DIR
```

Augustin-Zidek's avatar
Augustin-Zidek committed
488
489
### AlphaFold output

490
491
492
493
494
The outputs will be saved in a subdirectory of the directory provided via the
`--output_dir` flag of `run_docker.py` (defaults to `/tmp/alphafold/`). The
outputs include the computed MSAs, unrelaxed structures, relaxed structures,
ranked structures, raw model outputs, prediction metadata, and section timings.
The `--output_dir` directory will have the following structure:
Augustin-Zidek's avatar
Augustin-Zidek committed
495
496

```
497
<target_name>/
Augustin-Zidek's avatar
Augustin-Zidek committed
498
499
500
    features.pkl
    ranked_{0,1,2,3,4}.pdb
    ranking_debug.json
Augustin Zidek's avatar
Augustin Zidek committed
501
    relax_metrics.json
Augustin-Zidek's avatar
Augustin-Zidek committed
502
503
504
505
506
    relaxed_model_{1,2,3,4,5}.pdb
    result_model_{1,2,3,4,5}.pkl
    timings.json
    unrelaxed_model_{1,2,3,4,5}.pdb
    msas/
Augustin Zidek's avatar
Augustin Zidek committed
507
        bfd_uniref_hits.a3m
Augustin-Zidek's avatar
Augustin-Zidek committed
508
509
510
511
512
513
        mgnify_hits.sto
        uniref90_hits.sto
```

The contents of each output file are as follows:

514
*   `features.pkl` – A `pickle` file containing the input feature NumPy arrays
Augustin-Zidek's avatar
Augustin-Zidek committed
515
516
517
518
519
    used by the models to produce the structures.
*   `unrelaxed_model_*.pdb` – A PDB format text file containing the predicted
    structure, exactly as outputted by the model.
*   `relaxed_model_*.pdb` – A PDB format text file containing the predicted
    structure, after performing an Amber relaxation procedure on the unrelaxed
520
521
    structure prediction (see Jumper et al. 2021, Suppl. Methods 1.8.6 for
    details).
Augustin-Zidek's avatar
Augustin-Zidek committed
522
523
524
525
*   `ranked_*.pdb` – A PDB format text file containing the relaxed predicted
    structures, after reordering by model confidence. Here `ranked_0.pdb` should
    contain the prediction with the highest confidence, and `ranked_4.pdb` the
    prediction with the lowest confidence. To rank model confidence, we use
526
527
    predicted LDDT (pLDDT) scores (see Jumper et al. 2021, Suppl. Methods 1.9.6
    for details).
Augustin-Zidek's avatar
Augustin-Zidek committed
528
529
530
*   `ranking_debug.json` – A JSON format text file containing the pLDDT values
    used to perform the model ranking, and a mapping back to the original model
    names.
Augustin Zidek's avatar
Augustin Zidek committed
531
532
*   `relax_metrics.json` – A JSON format text file containing relax metrics, for
    instance remaining violations.
Augustin-Zidek's avatar
Augustin-Zidek committed
533
534
535
536
537
*   `timings.json` – A JSON format text file containing the times taken to run
    each section of the AlphaFold pipeline.
*   `msas/` - A directory containing the files describing the various genetic
    tool hits that were used to construct the input MSA.
*   `result_model_*.pkl` – A `pickle` file containing a nested dictionary of the
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    various NumPy arrays directly produced by the model. In addition to the
    output of the structure module, this includes auxiliary outputs such as:

    *   Distograms (`distogram/logits` contains a NumPy array of shape [N_res,
        N_res, N_bins] and `distogram/bin_edges` contains the definition of the
        bins).
    *   Per-residue pLDDT scores (`plddt` contains a NumPy array of shape
        [N_res] with the range of possible values from `0` to `100`, where `100`
        means most confident). This can serve to identify sequence regions
        predicted with high confidence or as an overall per-target confidence
        score when averaged across residues.
    *   Present only if using pTM models: predicted TM-score (`ptm` field
        contains a scalar). As a predictor of a global superposition metric,
        this score is designed to also assess whether the model is confident in
        the overall domain packing.
    *   Present only if using pTM models: predicted pairwise aligned errors
        (`predicted_aligned_error` contains a NumPy array of shape [N_res,
        N_res] with the range of possible values from `0` to
        `max_predicted_aligned_error`, where `0` means most confident). This can
        serve for a visualisation of domain packing confidence within the
        structure.
Augustin-Zidek's avatar
Augustin-Zidek committed
559

560
561
562
563
The pLDDT confidence measure is stored in the B-factor field of the output PDB
files (although unlike a B-factor, higher pLDDT is better, so care must be taken
when using for tasks such as molecular replacement).

Augustin-Zidek's avatar
Augustin-Zidek committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
This code has been tested to match mean top-1 accuracy on a CASP14 test set with
pLDDT ranking over 5 model predictions (some CASP targets were run with earlier
versions of AlphaFold and some had manual interventions; see our forthcoming
publication for details). Some targets such as T1064 may also have high
individual run variance over random seeds.

## Inferencing many proteins

The provided inference script is optimized for predicting the structure of a
single protein, and it will compile the neural network to be specialized to
exactly the size of the sequence, MSA, and templates. For large proteins, the
compile time is a negligible fraction of the runtime, but it may become more
significant for small proteins or if the multi-sequence alignments are already
precomputed. In the bulk inference case, it may make sense to use our
`make_fixed_size` function to pad the inputs to a uniform size, thereby reducing
the number of compilations required.

We do not provide a bulk inference script, but it should be straightforward to
develop on top of the `RunModel.predict` method with a parallel system for
precomputing multi-sequence alignments. Alternatively, this script can be run
repeatedly with only moderate overhead.

586
## Note on CASP14 reproducibility
Augustin-Zidek's avatar
Augustin-Zidek committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

AlphaFold's output for a small number of proteins has high inter-run variance,
and may be affected by changes in the input data. The CASP14 target T1064 is a
notable example; the large number of SARS-CoV-2-related sequences recently
deposited changes its MSA significantly. This variability is somewhat mitigated
by the model selection process; running 5 models and taking the most confident.

To reproduce the results of our CASP14 system as closely as possible you must
use the same database versions we used in CASP. These may not match the default
versions downloaded by our scripts.

For genetics:

*   UniRef90:
    [v2020_01](https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2020_01/uniref/)
*   MGnify:
    [v2018_12](http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2018_12/)
*   Uniclust30: [v2018_08](http://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/)
*   BFD: [only version available](https://bfd.mmseqs.com/)

For templates:

*   PDB: (downloaded 2020-05-14)
Augustin Zidek's avatar
Augustin Zidek committed
610
611
*   PDB70:
    [2020-05-13](http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/old-releases/pdb70_from_mmcif_200513.tar.gz)
Augustin-Zidek's avatar
Augustin-Zidek committed
612
613
614
615
616
617
618
619
620

An alternative for templates is to use the latest PDB and PDB70, but pass the
flag `--max_template_date=2020-05-14`, which restricts templates only to
structures that were available at the start of CASP14.

## Citing this work

If you use the code or data in this package, please cite:

621
```bibtex
Augustin-Zidek's avatar
Augustin-Zidek committed
622
623
624
625
626
@Article{AlphaFold2021,
  author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
  journal = {Nature},
  title   = {Highly accurate protein structure prediction with {AlphaFold}},
  year    = {2021},
627
628
629
630
  volume  = {596},
  number  = {7873},
  pages   = {583--589},
  doi     = {10.1038/s41586-021-03819-2}
Augustin-Zidek's avatar
Augustin-Zidek committed
631
632
633
}
```

634
635
636
637
638
In addition, if you use the AlphaFold-Multimer mode, please cite:

```bibtex
@article {AlphaFold-Multimer2021,
  author       = {Evans, Richard and O{\textquoteright}Neill, Michael and Pritzel, Alexander and Antropova, Natasha and Senior, Andrew and Green, Tim and {\v{Z}}{\'\i}dek, Augustin and Bates, Russ and Blackwell, Sam and Yim, Jason and Ronneberger, Olaf and Bodenstein, Sebastian and Zielinski, Michal and Bridgland, Alex and Potapenko, Anna and Cowie, Andrew and Tunyasuvunakool, Kathryn and Jain, Rishub and Clancy, Ellen and Kohli, Pushmeet and Jumper, John and Hassabis, Demis},
639
  journal      = {bioRxiv},
640
641
642
643
644
645
646
647
648
  title        = {Protein complex prediction with AlphaFold-Multimer},
  year         = {2021},
  elocation-id = {2021.10.04.463034},
  doi          = {10.1101/2021.10.04.463034},
  URL          = {https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034},
  eprint       = {https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034.full.pdf},
}
```

649
650
651
652
653
## Community contributions

Colab notebooks provided by the community (please note that these notebooks may
vary from our full AlphaFold system and we did not validate their accuracy):

Augustin Zidek's avatar
Augustin Zidek committed
654
655
*   The
    [ColabFold AlphaFold2 notebook](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb)
656
    by Martin Steinegger, Sergey Ovchinnikov and Milot Mirdita, which uses an
Augustin Zidek's avatar
Augustin Zidek committed
657
658
    API hosted at the Södinglab based on the MMseqs2 server
    [(Mirdita et al. 2019, Bioinformatics)](https://academic.oup.com/bioinformatics/article/35/16/2856/5280135)
659
660
    for the multiple sequence alignment creation.

Augustin-Zidek's avatar
Augustin-Zidek committed
661
662
663
664
665
666
667
668
## Acknowledgements

AlphaFold communicates with and/or references the following separate libraries
and packages:

*   [Abseil](https://github.com/abseil/abseil-py)
*   [Biopython](https://biopython.org)
*   [Chex](https://github.com/deepmind/chex)
669
*   [Colab](https://research.google.com/colaboratory/)
Augustin-Zidek's avatar
Augustin-Zidek committed
670
671
672
673
674
675
676
*   [Docker](https://www.docker.com)
*   [HH Suite](https://github.com/soedinglab/hh-suite)
*   [HMMER Suite](http://eddylab.org/software/hmmer)
*   [Haiku](https://github.com/deepmind/dm-haiku)
*   [Immutabledict](https://github.com/corenting/immutabledict)
*   [JAX](https://github.com/google/jax/)
*   [Kalign](https://msa.sbc.su.se/cgi-bin/msa.cgi)
677
*   [matplotlib](https://matplotlib.org/)
Augustin-Zidek's avatar
Augustin-Zidek committed
678
679
680
681
*   [ML Collections](https://github.com/google/ml_collections)
*   [NumPy](https://numpy.org)
*   [OpenMM](https://github.com/openmm/openmm)
*   [OpenStructure](https://openstructure.org)
682
*   [pandas](https://pandas.pydata.org/)
683
*   [pymol3d](https://github.com/avirshup/py3dmol)
Augustin-Zidek's avatar
Augustin-Zidek committed
684
685
686
687
*   [SciPy](https://scipy.org)
*   [Sonnet](https://github.com/deepmind/sonnet)
*   [TensorFlow](https://github.com/tensorflow/tensorflow)
*   [Tree](https://github.com/deepmind/tree)
688
*   [tqdm](https://github.com/tqdm/tqdm)
Augustin-Zidek's avatar
Augustin-Zidek committed
689
690
691

We thank all their contributors and maintainers!

692
693
## Get in Touch

Alex Bridgland's avatar
Alex Bridgland committed
694
695
If you have any questions not covered in this overview, please contact the
AlphaFold team at [alphafold@deepmind.com](mailto:alphafold@deepmind.com).
696

Augustin Zidek's avatar
Augustin Zidek committed
697
698
We would love to hear your feedback and understand how AlphaFold has been useful
in your research. Share your stories with us at
699
700
[alphafold@deepmind.com](mailto:alphafold@deepmind.com).

Augustin-Zidek's avatar
Augustin-Zidek committed
701
702
703
704
## License and Disclaimer

This is not an officially supported Google product.

Augustin Zidek's avatar
Augustin Zidek committed
705
Copyright 2022 DeepMind Technologies Limited.
Augustin-Zidek's avatar
Augustin-Zidek committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719

### AlphaFold Code License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at https://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

### Model Parameters License

720
721
722
The AlphaFold parameters are made available under the terms of the Creative
Commons Attribution 4.0 International (CC BY 4.0) license. You can find details
at: https://creativecommons.org/licenses/by/4.0/legalcode
Augustin-Zidek's avatar
Augustin-Zidek committed
723
724
725
726
727
728
729
730
731

### Third-party software

Use of the third-party software, libraries or code referred to in the
[Acknowledgements](#acknowledgements) section above may be governed by separate
terms and conditions or license provisions. Your use of the third-party
software, libraries or code is subject to any such terms and you should check
that you can comply with any applicable restrictions or terms and conditions
before use.
732
733
734

### Mirrored Databases

Augustin Zidek's avatar
Augustin Zidek committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
The following databases have been mirrored by DeepMind, and are available with
reference to the following:

*   [BFD](https://bfd.mmseqs.com/) (unmodified), by Steinegger M. and Söding J.,
    available under a
    [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).

*   [BFD](https://bfd.mmseqs.com/) (modified), by Steinegger M. and Söding J.,
    modified by DeepMind, available under a
    [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).
    See the Methods section of the
    [AlphaFold proteome paper](https://www.nature.com/articles/s41586-021-03828-1)
    for details.

*   [Uniref30: v2021_03](http://wwwuser.gwdg.de/~compbiol/uniclust/2021_03/)
    (unmodified), by Mirdita M. et al., available under a
    [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).

*   [MGnify: v2022_05](http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2022_05/README.txt)
    (unmodified), by Mitchell AL et al., available free of all copyright
    restrictions and made fully and freely available for both non-commercial and
    commercial use under
757
    [CC0 1.0 Universal (CC0 1.0) Public Domain Dedication](https://creativecommons.org/publicdomain/zero/1.0/).