run_alphafold.py 18.5 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Full AlphaFold protein structure prediction script."""
import json
import os
import pathlib
import pickle
import random
21
import shutil
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
import sys
import time
24
from typing import Dict, Union, Optional
Augustin-Zidek's avatar
Augustin-Zidek committed
25
26
27
28
29

from absl import app
from absl import flags
from absl import logging
from alphafold.common import protein
30
from alphafold.common import residue_constants
Augustin-Zidek's avatar
Augustin-Zidek committed
31
from alphafold.data import pipeline
32
from alphafold.data import pipeline_multimer
Augustin-Zidek's avatar
Augustin-Zidek committed
33
from alphafold.data import templates
34
35
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
36
from alphafold.model import config
Augustin Zidek's avatar
Augustin Zidek committed
37
from alphafold.model import data
Augustin-Zidek's avatar
Augustin-Zidek committed
38
39
from alphafold.model import model
from alphafold.relax import relax
Tom Ward's avatar
Tom Ward committed
40
import numpy as np
41

Augustin-Zidek's avatar
Augustin-Zidek committed
42
43
# Internal import (7716).

44
45
logging.set_verbosity(logging.INFO)

46
47
48
49
50
51
52
53
54
55
56
57
flags.DEFINE_list(
    'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
    'target that will be folded one after another. If a FASTA file contains '
    'multiple sequences, then it will be folded as a multimer. Paths should be '
    'separated by commas. All FASTA paths must have a unique basename as the '
    'basename is used to name the output directories for each prediction.')
flags.DEFINE_list(
    'is_prokaryote_list', None, 'Optional for multimer system, not used by the '
    'single chain system. This list should contain a boolean for each fasta '
    'specifying true where the target complex is from a prokaryote, and false '
    'where it is not, or where the origin is unknown. These values determine '
    'the pairing method for the MSA.')
58
59

flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
Augustin-Zidek's avatar
Augustin-Zidek committed
60
61
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
                    'store the results.')
62
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
Augustin-Zidek's avatar
Augustin-Zidek committed
63
                    'Path to the JackHMMER executable.')
64
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
Augustin-Zidek's avatar
Augustin-Zidek committed
65
                    'Path to the HHblits executable.')
66
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
Augustin-Zidek's avatar
Augustin-Zidek committed
67
                    'Path to the HHsearch executable.')
68
69
70
71
72
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
                    'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
                    'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
Augustin-Zidek's avatar
Augustin-Zidek committed
73
74
75
76
77
78
79
                    'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
                    'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
                    'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
                    'database for use by HHblits.')
80
81
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
                    'version of BFD used with the "reduced_dbs" preset.')
Augustin-Zidek's avatar
Augustin-Zidek committed
82
83
flags.DEFINE_string('uniclust30_database_path', None, 'Path to the Uniclust30 '
                    'database for use by HHblits.')
84
85
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
                    'database for use by JackHMMer.')
Augustin-Zidek's avatar
Augustin-Zidek committed
86
87
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
                    'database for use by HHsearch.')
88
89
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
                    'seqres database for use by hmmsearch.')
Augustin-Zidek's avatar
Augustin-Zidek committed
90
91
92
93
94
95
96
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
                    'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
                    'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
                    'mapping from obsolete PDB IDs to the PDB IDs of their '
                    'replacements.')
97
98
99
100
101
102
103
104
105
106
flags.DEFINE_enum('db_preset', 'full_dbs',
                  ['full_dbs', 'reduced_dbs'],
                  'Choose preset MSA database configuration - '
                  'smaller genetic database config (reduced_dbs) or '
                  'full genetic database config  (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
                  ['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
                  'Choose preset model configuration - the monomer model, '
                  'the monomer model with extra ensembling, monomer model with '
                  'pTM head, or multimer model')
Augustin-Zidek's avatar
Augustin-Zidek committed
107
108
109
110
111
112
113
114
115
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
                     'to obtain a timing that excludes the compilation time, '
                     'which should be more indicative of the time required for '
                     'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
                     'pipeline. By default, this is randomly generated. Note '
                     'that even if this is set, Alphafold may still not be '
                     'deterministic, because processes like GPU inference are '
                     'nondeterministic.')
116
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
Augustin Zidek's avatar
Augustin Zidek committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
                     'have been written to disk instead of running the MSA '
                     'tools. The MSA files are looked up in the output '
                     'directory, so it must stay the same between multiple '
                     'runs that are to reuse the MSAs. WARNING: This will not '
                     'check if the sequence, database or configuration have '
                     'changed.')
flags.DEFINE_boolean('run_relax', True, 'Whether to run the final relaxation '
                     'step on the predicted models. Turning relax off might '
                     'result in predictions with distracting stereochemical '
                     'violations but might help in case you are having issues '
                     'with the relaxation stage.')
flags.DEFINE_boolean('use_gpu_relax', None, 'Whether to relax on GPU. '
                     'Relax on GPU can be much faster than CPU, so it is '
                     'recommended to enable if possible. GPUs must be available'
                     ' if this setting is enabled.')
132

Augustin-Zidek's avatar
Augustin-Zidek committed
133
134
135
136
137
138
139
FLAGS = flags.FLAGS

MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
140
RELAX_MAX_OUTER_ITERATIONS = 3
Augustin-Zidek's avatar
Augustin-Zidek committed
141
142


143
144
145
def _check_flag(flag_name: str,
                other_flag_name: str,
                should_be_set: bool):
146
147
  if should_be_set != bool(FLAGS[flag_name].value):
    verb = 'be' if should_be_set else 'not be'
148
149
    raise ValueError(f'{flag_name} must {verb} set when running with '
                     f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
150
151


Augustin-Zidek's avatar
Augustin-Zidek committed
152
153
154
155
def predict_structure(
    fasta_path: str,
    fasta_name: str,
    output_dir_base: str,
156
    data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
Augustin-Zidek's avatar
Augustin-Zidek committed
157
158
159
    model_runners: Dict[str, model.RunModel],
    amber_relaxer: relax.AmberRelaxation,
    benchmark: bool,
160
161
    random_seed: int,
    is_prokaryote: Optional[bool] = None):
Augustin-Zidek's avatar
Augustin-Zidek committed
162
  """Predicts structure using AlphaFold for the given sequence."""
163
  logging.info('Predicting %s', fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
164
165
166
167
168
169
170
171
172
173
  timings = {}
  output_dir = os.path.join(output_dir_base, fasta_name)
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)
  msa_output_dir = os.path.join(output_dir, 'msas')
  if not os.path.exists(msa_output_dir):
    os.makedirs(msa_output_dir)

  # Get features.
  t_0 = time.time()
174
175
176
177
178
179
180
181
182
  if is_prokaryote is None:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir)
  else:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
183
184
185
186
187
188
189
  timings['features'] = time.time() - t_0

  # Write out features as a pickled dictionary.
  features_output_path = os.path.join(output_dir, 'features.pkl')
  with open(features_output_path, 'wb') as f:
    pickle.dump(feature_dict, f, protocol=4)

190
  unrelaxed_pdbs = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
191
  relaxed_pdbs = {}
192
  ranking_confidences = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
193
194

  # Run the models.
195
196
197
198
  num_models = len(model_runners)
  for model_index, (model_name, model_runner) in enumerate(
      model_runners.items()):
    logging.info('Running model %s on %s', model_name, fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
199
    t_0 = time.time()
200
    model_random_seed = model_index + random_seed * num_models
Augustin-Zidek's avatar
Augustin-Zidek committed
201
    processed_feature_dict = model_runner.process_features(
202
        feature_dict, random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
203
204
205
    timings[f'process_features_{model_name}'] = time.time() - t_0

    t_0 = time.time()
206
207
    prediction_result = model_runner.predict(processed_feature_dict,
                                             random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
208
209
210
    t_diff = time.time() - t_0
    timings[f'predict_and_compile_{model_name}'] = t_diff
    logging.info(
211
212
        'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
        model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
213
214
215

    if benchmark:
      t_0 = time.time()
216
217
218
219
220
221
222
      model_runner.predict(processed_feature_dict,
                           random_seed=model_random_seed)
      t_diff = time.time() - t_0
      timings[f'predict_benchmark_{model_name}'] = t_diff
      logging.info(
          'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
          model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
223

224
    plddt = prediction_result['plddt']
225
    ranking_confidences[model_name] = prediction_result['ranking_confidence']
Augustin-Zidek's avatar
Augustin-Zidek committed
226
227
228
229
230
231

    # Save the model outputs.
    result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
    with open(result_output_path, 'wb') as f:
      pickle.dump(prediction_result, f, protocol=4)

232
233
234
235
236
237
238
    # Add the predicted LDDT in the b-factor column.
    # Note that higher predicted LDDT value means higher model confidence.
    plddt_b_factors = np.repeat(
        plddt[:, None], residue_constants.atom_type_num, axis=-1)
    unrelaxed_protein = protein.from_prediction(
        features=processed_feature_dict,
        result=prediction_result,
239
240
        b_factors=plddt_b_factors,
        remove_leading_feature_dimension=not model_runner.multimer_mode)
Augustin-Zidek's avatar
Augustin-Zidek committed
241

242
    unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
Augustin-Zidek's avatar
Augustin-Zidek committed
243
244
    unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
    with open(unrelaxed_pdb_path, 'w') as f:
245
      f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
246

247
248
249
250
251
    if amber_relaxer:
      # Relax the prediction.
      t_0 = time.time()
      relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
      timings[f'relax_{model_name}'] = time.time() - t_0
Augustin-Zidek's avatar
Augustin-Zidek committed
252

253
      relaxed_pdbs[model_name] = relaxed_pdb_str
Augustin-Zidek's avatar
Augustin-Zidek committed
254

255
256
257
258
259
      # Save the relaxed PDB.
      relaxed_output_path = os.path.join(
          output_dir, f'relaxed_{model_name}.pdb')
      with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)
Augustin-Zidek's avatar
Augustin-Zidek committed
260

261
  # Rank by model confidence and write out relaxed PDBs in rank order.
Augustin-Zidek's avatar
Augustin-Zidek committed
262
263
  ranked_order = []
  for idx, (model_name, _) in enumerate(
264
      sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)):
Augustin-Zidek's avatar
Augustin-Zidek committed
265
266
267
    ranked_order.append(model_name)
    ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
    with open(ranked_output_path, 'w') as f:
268
269
270
271
      if amber_relaxer:
        f.write(relaxed_pdbs[model_name])
      else:
        f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
272
273
274

  ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
  with open(ranking_output_path, 'w') as f:
275
276
277
    label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
    f.write(json.dumps(
        {label: ranking_confidences, 'order': ranked_order}, indent=4))
Augustin-Zidek's avatar
Augustin-Zidek committed
278
279
280
281
282
283
284
285
286
287
288
289

  logging.info('Final timings for %s: %s', fasta_name, timings)

  timings_output_path = os.path.join(output_dir, 'timings.json')
  with open(timings_output_path, 'w') as f:
    f.write(json.dumps(timings, indent=4))


def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')

290
291
292
293
294
295
296
297
  for tool_name in (
      'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
    if not FLAGS[f'{tool_name}_binary_path'].value:
      raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
                       'sure it is installed on your system.')

  use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
  _check_flag('small_bfd_database_path', 'db_preset',
298
              should_be_set=use_small_bfd)
299
  _check_flag('bfd_database_path', 'db_preset',
300
              should_be_set=not use_small_bfd)
301
  _check_flag('uniclust30_database_path', 'db_preset',
302
303
              should_be_set=not use_small_bfd)

304
305
306
307
308
309
310
311
312
  run_multimer_system = 'multimer' in FLAGS.model_preset
  _check_flag('pdb70_database_path', 'model_preset',
              should_be_set=not run_multimer_system)
  _check_flag('pdb_seqres_database_path', 'model_preset',
              should_be_set=run_multimer_system)
  _check_flag('uniprot_database_path', 'model_preset',
              should_be_set=run_multimer_system)

  if FLAGS.model_preset == 'monomer_casp14':
Augustin-Zidek's avatar
Augustin-Zidek committed
313
    num_ensemble = 8
314
315
  else:
    num_ensemble = 1
Augustin-Zidek's avatar
Augustin-Zidek committed
316
317
318
319
320
321

  # Check for duplicate FASTA file names.
  fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
  if len(fasta_names) != len(set(fasta_names)):
    raise ValueError('All FASTA paths must have a unique basename.')

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  # Check that is_prokaryote_list has same number of elements as fasta_paths,
  # and convert to bool.
  if FLAGS.is_prokaryote_list:
    if len(FLAGS.is_prokaryote_list) != len(FLAGS.fasta_paths):
      raise ValueError('--is_prokaryote_list must either be omitted or match '
                       'length of --fasta_paths.')
    is_prokaryote_list = []
    for s in FLAGS.is_prokaryote_list:
      if s in ('true', 'false'):
        is_prokaryote_list.append(s == 'true')
      else:
        raise ValueError('--is_prokaryote_list must contain comma separated '
                         'true or false values.')
  else:  # Default is_prokaryote to False.
    is_prokaryote_list = [False] * len(fasta_names)

  if run_multimer_system:
    template_searcher = hmmsearch.Hmmsearch(
        binary_path=FLAGS.hmmsearch_binary_path,
        hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
        database_path=FLAGS.pdb_seqres_database_path)
    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
  else:
    template_searcher = hhsearch.HHSearch(
        binary_path=FLAGS.hhsearch_binary_path,
        databases=[FLAGS.pdb70_database_path])
    template_featurizer = templates.HhsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)

  monomer_data_pipeline = pipeline.DataPipeline(
Augustin-Zidek's avatar
Augustin-Zidek committed
363
364
365
366
367
368
      jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
      hhblits_binary_path=FLAGS.hhblits_binary_path,
      uniref90_database_path=FLAGS.uniref90_database_path,
      mgnify_database_path=FLAGS.mgnify_database_path,
      bfd_database_path=FLAGS.bfd_database_path,
      uniclust30_database_path=FLAGS.uniclust30_database_path,
369
      small_bfd_database_path=FLAGS.small_bfd_database_path,
370
      template_searcher=template_searcher,
371
      template_featurizer=template_featurizer,
372
373
374
375
376
377
378
379
380
381
382
      use_small_bfd=use_small_bfd,
      use_precomputed_msas=FLAGS.use_precomputed_msas)

  if run_multimer_system:
    data_pipeline = pipeline_multimer.DataPipeline(
        monomer_data_pipeline=monomer_data_pipeline,
        jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
        uniprot_database_path=FLAGS.uniprot_database_path,
        use_precomputed_msas=FLAGS.use_precomputed_msas)
  else:
    data_pipeline = monomer_data_pipeline
Augustin-Zidek's avatar
Augustin-Zidek committed
383
384

  model_runners = {}
385
386
  model_names = config.MODEL_PRESETS[FLAGS.model_preset]
  for model_name in model_names:
Augustin-Zidek's avatar
Augustin-Zidek committed
387
    model_config = config.model_config(model_name)
388
389
390
391
    if run_multimer_system:
      model_config.model.num_ensemble_eval = num_ensemble
    else:
      model_config.data.eval.num_ensemble = num_ensemble
Augustin-Zidek's avatar
Augustin-Zidek committed
392
393
394
395
396
397
398
399
    model_params = data.get_model_haiku_params(
        model_name=model_name, data_dir=FLAGS.data_dir)
    model_runner = model.RunModel(model_config, model_params)
    model_runners[model_name] = model_runner

  logging.info('Have %d models: %s', len(model_runners),
               list(model_runners.keys()))

Augustin Zidek's avatar
Augustin Zidek committed
400
401
402
403
404
405
406
407
408
409
  if FLAGS.run_relax:
    amber_relaxer = relax.AmberRelaxation(
        max_iterations=RELAX_MAX_ITERATIONS,
        tolerance=RELAX_ENERGY_TOLERANCE,
        stiffness=RELAX_STIFFNESS,
        exclude_residues=RELAX_EXCLUDE_RESIDUES,
        max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
        use_gpu=FLAGS.use_gpu_relax)
  else:
    amber_relaxer = None
Augustin-Zidek's avatar
Augustin-Zidek committed
410
411
412

  random_seed = FLAGS.random_seed
  if random_seed is None:
413
    random_seed = random.randrange(sys.maxsize // len(model_names))
Augustin-Zidek's avatar
Augustin-Zidek committed
414
415
416
  logging.info('Using random seed %d for the data pipeline', random_seed)

  # Predict structure for each of the sequences.
417
418
419
  for i, fasta_path in enumerate(FLAGS.fasta_paths):
    is_prokaryote = is_prokaryote_list[i] if run_multimer_system else None
    fasta_name = fasta_names[i]
Augustin-Zidek's avatar
Augustin-Zidek committed
420
421
422
423
424
425
426
427
    predict_structure(
        fasta_path=fasta_path,
        fasta_name=fasta_name,
        output_dir_base=FLAGS.output_dir,
        data_pipeline=data_pipeline,
        model_runners=model_runners,
        amber_relaxer=amber_relaxer,
        benchmark=FLAGS.benchmark,
428
429
        random_seed=random_seed,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
430
431
432
433
434
435
436
437
438
439
440
441


if __name__ == '__main__':
  flags.mark_flags_as_required([
      'fasta_paths',
      'output_dir',
      'data_dir',
      'uniref90_database_path',
      'mgnify_database_path',
      'template_mmcif_dir',
      'max_template_date',
      'obsolete_pdbs_path',
Augustin Zidek's avatar
Augustin Zidek committed
442
      'use_gpu_relax',
Augustin-Zidek's avatar
Augustin-Zidek committed
443
444
445
  ])

  app.run(main)