pipeline.py 10.4 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for building the input features for the AlphaFold model."""

import os
18
from typing import Any, Mapping, MutableMapping, Optional, Sequence, Union
19
from absl import logging
Augustin-Zidek's avatar
Augustin-Zidek committed
20
from alphafold.common import residue_constants
21
from alphafold.data import msa_identifiers
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
24
25
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
26
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
27
from alphafold.data.tools import jackhmmer
Tom Ward's avatar
Tom Ward committed
28
29
30
import numpy as np

# Internal import (7716).
Augustin-Zidek's avatar
Augustin-Zidek committed
31

32
33
FeatureDict = MutableMapping[str, np.ndarray]
TemplateSearcher = Union[hhsearch.HHSearch, hmmsearch.Hmmsearch]
Augustin-Zidek's avatar
Augustin-Zidek committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def make_sequence_features(
    sequence: str, description: str, num_res: int) -> FeatureDict:
  """Constructs a feature dict of sequence features."""
  features = {}
  features['aatype'] = residue_constants.sequence_to_onehot(
      sequence=sequence,
      mapping=residue_constants.restype_order_with_x,
      map_unknown_to_x=True)
  features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
  features['domain_name'] = np.array([description.encode('utf-8')],
                                     dtype=np.object_)
  features['residue_index'] = np.array(range(num_res), dtype=np.int32)
  features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
  features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
  return features


53
def make_msa_features(msas: Sequence[parsers.Msa]) -> FeatureDict:
Augustin-Zidek's avatar
Augustin-Zidek committed
54
55
56
57
58
59
  """Constructs a feature dict of MSA features."""
  if not msas:
    raise ValueError('At least one MSA must be provided.')

  int_msa = []
  deletion_matrix = []
60
61
  uniprot_accession_ids = []
  species_ids = []
Augustin-Zidek's avatar
Augustin-Zidek committed
62
63
64
65
  seen_sequences = set()
  for msa_index, msa in enumerate(msas):
    if not msa:
      raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
66
    for sequence_index, sequence in enumerate(msa.sequences):
Augustin-Zidek's avatar
Augustin-Zidek committed
67
68
69
70
71
      if sequence in seen_sequences:
        continue
      seen_sequences.add(sequence)
      int_msa.append(
          [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
72
73
74
75
76
77
78
79
      deletion_matrix.append(msa.deletion_matrix[sequence_index])
      identifiers = msa_identifiers.get_identifiers(
          msa.descriptions[sequence_index])
      uniprot_accession_ids.append(
          identifiers.uniprot_accession_id.encode('utf-8'))
      species_ids.append(identifiers.species_id.encode('utf-8'))

  num_res = len(msas[0].sequences[0])
Augustin-Zidek's avatar
Augustin-Zidek committed
80
81
82
83
84
85
  num_alignments = len(int_msa)
  features = {}
  features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
  features['msa'] = np.array(int_msa, dtype=np.int32)
  features['num_alignments'] = np.array(
      [num_alignments] * num_res, dtype=np.int32)
86
87
88
  features['msa_uniprot_accession_identifiers'] = np.array(
      uniprot_accession_ids, dtype=np.object_)
  features['msa_species_identifiers'] = np.array(species_ids, dtype=np.object_)
Augustin-Zidek's avatar
Augustin-Zidek committed
89
90
91
  return features


92
93
def run_msa_tool(msa_runner, input_fasta_path: str, msa_out_path: str,
                 msa_format: str, use_precomputed_msas: bool,
Augustin Zidek's avatar
Augustin Zidek committed
94
                 max_sto_sequences: Optional[int] = None
95
96
97
                 ) -> Mapping[str, Any]:
  """Runs an MSA tool, checking if output already exists first."""
  if not use_precomputed_msas or not os.path.exists(msa_out_path):
Augustin Zidek's avatar
Augustin Zidek committed
98
99
100
101
    if msa_format == 'sto' and max_sto_sequences is not None:
      result = msa_runner.query(input_fasta_path, max_sto_sequences)[0]  # pytype: disable=wrong-arg-count
    else:
      result = msa_runner.query(input_fasta_path)[0]
102
103
104
105
    with open(msa_out_path, 'w') as f:
      f.write(result[msa_format])
  else:
    logging.warning('Reading MSA from file %s', msa_out_path)
Augustin Zidek's avatar
Augustin Zidek committed
106
107
108
109
110
111
112
    if msa_format == 'sto' and max_sto_sequences is not None:
      precomputed_msa = parsers.truncate_stockholm_msa(
          msa_out_path, max_sto_sequences)
      result = {'sto': precomputed_msa}
    else:
      with open(msa_out_path, 'r') as f:
        result = {msa_format: f.read()}
113
114
115
  return result


Augustin-Zidek's avatar
Augustin-Zidek committed
116
117
118
119
120
121
122
123
class DataPipeline:
  """Runs the alignment tools and assembles the input features."""

  def __init__(self,
               jackhmmer_binary_path: str,
               hhblits_binary_path: str,
               uniref90_database_path: str,
               mgnify_database_path: str,
124
125
126
               bfd_database_path: Optional[str],
               uniclust30_database_path: Optional[str],
               small_bfd_database_path: Optional[str],
127
               template_searcher: TemplateSearcher,
Augustin-Zidek's avatar
Augustin-Zidek committed
128
               template_featurizer: templates.TemplateHitFeaturizer,
129
               use_small_bfd: bool,
Augustin-Zidek's avatar
Augustin-Zidek committed
130
               mgnify_max_hits: int = 501,
131
132
133
               uniref_max_hits: int = 10000,
               use_precomputed_msas: bool = False):
    """Initializes the data pipeline."""
134
    self._use_small_bfd = use_small_bfd
Augustin-Zidek's avatar
Augustin-Zidek committed
135
136
137
    self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=uniref90_database_path)
138
139
140
141
142
143
144
145
    if use_small_bfd:
      self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
          binary_path=jackhmmer_binary_path,
          database_path=small_bfd_database_path)
    else:
      self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
          binary_path=hhblits_binary_path,
          databases=[bfd_database_path, uniclust30_database_path])
Augustin-Zidek's avatar
Augustin-Zidek committed
146
147
148
    self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=mgnify_database_path)
149
    self.template_searcher = template_searcher
Augustin-Zidek's avatar
Augustin-Zidek committed
150
151
152
    self.template_featurizer = template_featurizer
    self.mgnify_max_hits = mgnify_max_hits
    self.uniref_max_hits = uniref_max_hits
153
    self.use_precomputed_msas = use_precomputed_msas
Augustin-Zidek's avatar
Augustin-Zidek committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167

  def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
    """Runs alignment tools on the input sequence and creates features."""
    with open(input_fasta_path) as f:
      input_fasta_str = f.read()
    input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
    if len(input_seqs) != 1:
      raise ValueError(
          f'More than one input sequence found in {input_fasta_path}.')
    input_sequence = input_seqs[0]
    input_description = input_descs[0]
    num_res = len(input_sequence)

    uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
168
    jackhmmer_uniref90_result = run_msa_tool(
Augustin Zidek's avatar
Augustin Zidek committed
169
170
171
172
173
174
        msa_runner=self.jackhmmer_uniref90_runner,
        input_fasta_path=input_fasta_path,
        msa_out_path=uniref90_out_path,
        msa_format='sto',
        use_precomputed_msas=self.use_precomputed_msas,
        max_sto_sequences=self.uniref_max_hits)
Augustin-Zidek's avatar
Augustin-Zidek committed
175
    mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
176
    jackhmmer_mgnify_result = run_msa_tool(
Augustin Zidek's avatar
Augustin Zidek committed
177
178
179
180
181
182
        msa_runner=self.jackhmmer_mgnify_runner,
        input_fasta_path=input_fasta_path,
        msa_out_path=mgnify_out_path,
        msa_format='sto',
        use_precomputed_msas=self.use_precomputed_msas,
        max_sto_sequences=self.mgnify_max_hits)
183
184

    msa_for_templates = jackhmmer_uniref90_result['sto']
Augustin Zidek's avatar
Augustin Zidek committed
185
    msa_for_templates = parsers.deduplicate_stockholm_msa(msa_for_templates)
186
187
188
189
190
191
192
193
194
195
196
    msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa(
        msa_for_templates)

    if self.template_searcher.input_format == 'sto':
      pdb_templates_result = self.template_searcher.query(msa_for_templates)
    elif self.template_searcher.input_format == 'a3m':
      uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates)
      pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m)
    else:
      raise ValueError('Unrecognized template input format: '
                       f'{self.template_searcher.input_format}')
197

198
199
200
201
    pdb_hits_out_path = os.path.join(
        msa_output_dir, f'pdb_hits.{self.template_searcher.output_format}')
    with open(pdb_hits_out_path, 'w') as f:
      f.write(pdb_templates_result)
Augustin-Zidek's avatar
Augustin-Zidek committed
202

203
204
    uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result['sto'])
    mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result['sto'])
Augustin-Zidek's avatar
Augustin-Zidek committed
205

206
207
    pdb_template_hits = self.template_searcher.get_template_hits(
        output_string=pdb_templates_result, input_sequence=input_sequence)
Augustin-Zidek's avatar
Augustin-Zidek committed
208

209
210
211
    if self._use_small_bfd:
      bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.sto')
      jackhmmer_small_bfd_result = run_msa_tool(
Augustin Zidek's avatar
Augustin Zidek committed
212
213
214
215
216
          msa_runner=self.jackhmmer_small_bfd_runner,
          input_fasta_path=input_fasta_path,
          msa_out_path=bfd_out_path,
          msa_format='sto',
          use_precomputed_msas=self.use_precomputed_msas)
217
      bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result['sto'])
218
219
    else:
      bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
220
      hhblits_bfd_uniclust_result = run_msa_tool(
Augustin Zidek's avatar
Augustin Zidek committed
221
222
223
224
225
          msa_runner=self.hhblits_bfd_uniclust_runner,
          input_fasta_path=input_fasta_path,
          msa_out_path=bfd_out_path,
          msa_format='a3m',
          use_precomputed_msas=self.use_precomputed_msas)
226
      bfd_msa = parsers.parse_a3m(hhblits_bfd_uniclust_result['a3m'])
Augustin-Zidek's avatar
Augustin-Zidek committed
227
228
229

    templates_result = self.template_featurizer.get_templates(
        query_sequence=input_sequence,
230
        hits=pdb_template_hits)
Augustin-Zidek's avatar
Augustin-Zidek committed
231
232
233
234
235
236

    sequence_features = make_sequence_features(
        sequence=input_sequence,
        description=input_description,
        num_res=num_res)

237
    msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa))
Augustin-Zidek's avatar
Augustin-Zidek committed
238

239
240
241
242
243
244
245
246
247
    logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))
    logging.info('BFD MSA size: %d sequences.', len(bfd_msa))
    logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))
    logging.info('Final (deduplicated) MSA size: %d sequences.',
                 msa_features['num_alignments'][0])
    logging.info('Total number of templates (NB: this can include bad '
                 'templates and is later filtered to top 4): %d.',
                 templates_result.features['template_domain_names'].shape[0])

Augustin-Zidek's avatar
Augustin-Zidek committed
248
    return {**sequence_features, **msa_features, **templates_result.features}