run_alphafold_test.py 2.38 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for run_alphafold."""

import os

from absl.testing import absltest
from absl.testing import parameterized
Tom Ward's avatar
Tom Ward committed
21
import run_alphafold
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import mock
import numpy as np
# Internal import (7716).


class RunAlphafoldTest(parameterized.TestCase):

  def test_end_to_end(self):

    data_pipeline_mock = mock.Mock()
    model_runner_mock = mock.Mock()
    amber_relaxer_mock = mock.Mock()

    data_pipeline_mock.process.return_value = {}
    model_runner_mock.process_features.return_value = {
        'aatype': np.zeros((12, 10), dtype=np.int32),
        'residue_index': np.tile(np.arange(10, dtype=np.int32)[None], (12, 1)),
    }
    model_runner_mock.predict.return_value = {
        'structure_module': {
            'final_atom_positions': np.zeros((10, 37, 3)),
            'final_atom_mask': np.ones((10, 37)),
        },
        'predicted_lddt': {
            'logits': np.ones((10, 50)),
        },
        'plddt': np.zeros(10),
        'ptm': np.array(0.),
        'aligned_confidence_probs': np.zeros((10, 10, 50)),
        'predicted_aligned_error': np.zeros((10, 10)),
        'max_predicted_aligned_error': np.array(0.),
    }
    amber_relaxer_mock.process.return_value = ('RELAXED', None, None)

    fasta_path = os.path.join(absltest.get_default_test_tmpdir(),
                              'target.fasta')
    with open(fasta_path, 'wt') as f:
      f.write('>A\nAAAAAAAAAAAAA')
    fasta_name = 'test'

    out_dir = absltest.get_default_test_tmpdir()

    run_alphafold.predict_structure(
        fasta_path=fasta_path,
        fasta_name=fasta_name,
        output_dir_base=out_dir,
        data_pipeline=data_pipeline_mock,
        model_runners={'model1': model_runner_mock},
        amber_relaxer=amber_relaxer_mock,
        benchmark=False,
        random_seed=0)


if __name__ == '__main__':
  absltest.main()