all_atom_test.py 4.6 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for all_atom."""

from absl.testing import absltest
from absl.testing import parameterized
from alphafold.model import all_atom
from alphafold.model import r3
Tom Ward's avatar
Tom Ward committed
21
import numpy as np
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

L1_CLAMP_DISTANCE = 10


def get_identity_rigid(shape):
  """Returns identity rigid transform."""

  ones = np.ones(shape)
  zeros = np.zeros(shape)
  rot = r3.Rots(ones, zeros, zeros,
                zeros, ones, zeros,
                zeros, zeros, ones)
  trans = r3.Vecs(zeros, zeros, zeros)
  return r3.Rigids(rot, trans)


def get_global_rigid_transform(rot_angle, translation, bcast_dims):
  """Returns rigid transform that globally rotates/translates by same amount."""

  rot_angle = np.asarray(rot_angle)
  translation = np.asarray(translation)
  if bcast_dims:
    for _ in range(bcast_dims):
      rot_angle = np.expand_dims(rot_angle, 0)
      translation = np.expand_dims(translation, 0)
  sin_angle = np.sin(np.deg2rad(rot_angle))
  cos_angle = np.cos(np.deg2rad(rot_angle))
  ones = np.ones_like(sin_angle)
  zeros = np.zeros_like(sin_angle)
  rot = r3.Rots(ones, zeros, zeros,
                zeros, cos_angle, -sin_angle,
                zeros, sin_angle, cos_angle)
  trans = r3.Vecs(translation[..., 0], translation[..., 1], translation[..., 2])
  return r3.Rigids(rot, trans)


class AllAtomTest(parameterized.TestCase, absltest.TestCase):

  @parameterized.named_parameters(
      ('identity', 0, [0, 0, 0]),
      ('rot_90', 90, [0, 0, 0]),
      ('trans_10', 0, [0, 0, 10]),
      ('rot_174_trans_1', 174, [1, 1, 1]))
  def test_frame_aligned_point_error_perfect_on_global_transform(
      self, rot_angle, translation):
    """Tests global transform between target and preds gives perfect score."""

    # pylint: disable=bad-whitespace
    target_positions = np.array(
        [[ 21.182,  23.095,  19.731],
         [ 22.055,  20.919,  17.294],
         [ 24.599,  20.005,  15.041],
         [ 25.567,  18.214,  12.166],
         [ 28.063,  17.082,  10.043],
         [ 28.779,  15.569,   6.985],
         [ 30.581,  13.815,   4.612],
         [ 29.258,  12.193,   2.296]])
    # pylint: enable=bad-whitespace
    global_rigid_transform = get_global_rigid_transform(
        rot_angle, translation, 1)

    target_positions = r3.vecs_from_tensor(target_positions)
    pred_positions = r3.rigids_mul_vecs(
        global_rigid_transform, target_positions)
    positions_mask = np.ones(target_positions.x.shape[0])

    target_frames = get_identity_rigid(10)
    pred_frames = r3.rigids_mul_rigids(global_rigid_transform, target_frames)
    frames_mask = np.ones(10)

    fape = all_atom.frame_aligned_point_error(
        pred_frames, target_frames, frames_mask, pred_positions,
        target_positions, positions_mask, L1_CLAMP_DISTANCE,
        L1_CLAMP_DISTANCE, epsilon=0)
    self.assertAlmostEqual(fape, 0.)

  @parameterized.named_parameters(
      ('identity',
       [[0, 0, 0], [5, 0, 0], [10, 0, 0]],
       [[0, 0, 0], [5, 0, 0], [10, 0, 0]],
       0.),
      ('shift_2.5',
       [[0, 0, 0], [5, 0, 0], [10, 0, 0]],
       [[2.5, 0, 0], [7.5, 0, 0], [7.5, 0, 0]],
       0.25),
      ('shift_5',
       [[0, 0, 0], [5, 0, 0], [10, 0, 0]],
       [[5, 0, 0], [10, 0, 0], [15, 0, 0]],
       0.5),
      ('shift_10',
       [[0, 0, 0], [5, 0, 0], [10, 0, 0]],
       [[10, 0, 0], [15, 0, 0], [0, 0, 0]],
       1.))
  def test_frame_aligned_point_error_matches_expected(
      self, target_positions, pred_positions, expected_alddt):
    """Tests score matches expected."""

    target_frames = get_identity_rigid(2)
    pred_frames = target_frames
    frames_mask = np.ones(2)

    target_positions = r3.vecs_from_tensor(np.array(target_positions))
    pred_positions = r3.vecs_from_tensor(np.array(pred_positions))
    positions_mask = np.ones(target_positions.x.shape[0])

    alddt = all_atom.frame_aligned_point_error(
        pred_frames, target_frames, frames_mask, pred_positions,
        target_positions, positions_mask, L1_CLAMP_DISTANCE,
        L1_CLAMP_DISTANCE, epsilon=0)
    self.assertAlmostEqual(alddt, expected_alddt)


if __name__ == '__main__':
  absltest.main()