run_alphafold.py 17.5 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Full AlphaFold protein structure prediction script."""
import json
import os
import pathlib
import pickle
import random
21
import shutil
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
import sys
import time
24
from typing import Dict, Union, Optional
Augustin-Zidek's avatar
Augustin-Zidek committed
25
26
27
28
29

from absl import app
from absl import flags
from absl import logging
from alphafold.common import protein
30
from alphafold.common import residue_constants
Augustin-Zidek's avatar
Augustin-Zidek committed
31
from alphafold.data import pipeline
32
from alphafold.data import pipeline_multimer
Augustin-Zidek's avatar
Augustin-Zidek committed
33
from alphafold.data import templates
34
35
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
36
37
38
from alphafold.model import config
from alphafold.model import model
from alphafold.relax import relax
Tom Ward's avatar
Tom Ward committed
39
import numpy as np
40
41

from alphafold.model import data
Augustin-Zidek's avatar
Augustin-Zidek committed
42
43
# Internal import (7716).

44
45
logging.set_verbosity(logging.INFO)

Augustin-Zidek's avatar
Augustin-Zidek committed
46
flags.DEFINE_list('fasta_paths', None, 'Paths to FASTA files, each containing '
47
                  'a prediction target. Paths should be separated by commas. '
Augustin-Zidek's avatar
Augustin-Zidek committed
48
49
50
                  'All FASTA paths must have a unique basename as the '
                  'basename is used to name the output directories for '
                  'each prediction.')
51
52
53
54
55
56
57
58
59
flags.DEFINE_list('is_prokaryote_list', None, 'Optional for multimer system, '
                  'not used by the single chain system. '
                  'This list should contain a boolean for each fasta '
                  'specifying true where the target complex is from a '
                  'prokaryote, and false where it is not, or where the '
                  'origin is unknown. These values determine the pairing '
                  'method for the MSA.')

flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
Augustin-Zidek's avatar
Augustin-Zidek committed
60
61
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
                    'store the results.')
62
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
Augustin-Zidek's avatar
Augustin-Zidek committed
63
                    'Path to the JackHMMER executable.')
64
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
Augustin-Zidek's avatar
Augustin-Zidek committed
65
                    'Path to the HHblits executable.')
66
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
Augustin-Zidek's avatar
Augustin-Zidek committed
67
                    'Path to the HHsearch executable.')
68
69
70
71
72
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
                    'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
                    'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
Augustin-Zidek's avatar
Augustin-Zidek committed
73
74
75
76
77
78
79
                    'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
                    'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
                    'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
                    'database for use by HHblits.')
80
81
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
                    'version of BFD used with the "reduced_dbs" preset.')
Augustin-Zidek's avatar
Augustin-Zidek committed
82
83
flags.DEFINE_string('uniclust30_database_path', None, 'Path to the Uniclust30 '
                    'database for use by HHblits.')
84
85
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
                    'database for use by JackHMMer.')
Augustin-Zidek's avatar
Augustin-Zidek committed
86
87
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
                    'database for use by HHsearch.')
88
89
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
                    'seqres database for use by hmmsearch.')
Augustin-Zidek's avatar
Augustin-Zidek committed
90
91
92
93
94
95
96
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
                    'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
                    'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
                    'mapping from obsolete PDB IDs to the PDB IDs of their '
                    'replacements.')
97
98
99
100
101
102
103
104
105
106
flags.DEFINE_enum('db_preset', 'full_dbs',
                  ['full_dbs', 'reduced_dbs'],
                  'Choose preset MSA database configuration - '
                  'smaller genetic database config (reduced_dbs) or '
                  'full genetic database config  (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
                  ['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
                  'Choose preset model configuration - the monomer model, '
                  'the monomer model with extra ensembling, monomer model with '
                  'pTM head, or multimer model')
Augustin-Zidek's avatar
Augustin-Zidek committed
107
108
109
110
111
112
113
114
115
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
                     'to obtain a timing that excludes the compilation time, '
                     'which should be more indicative of the time required for '
                     'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
                     'pipeline. By default, this is randomly generated. Note '
                     'that even if this is set, Alphafold may still not be '
                     'deterministic, because processes like GPU inference are '
                     'nondeterministic.')
116
117
118
119
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
                     'have been written to disk. WARNING: This will not check '
                     'if the sequence, database or configuration have changed.')

Augustin-Zidek's avatar
Augustin-Zidek committed
120
121
122
123
124
125
126
FLAGS = flags.FLAGS

MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
127
RELAX_MAX_OUTER_ITERATIONS = 3
Augustin-Zidek's avatar
Augustin-Zidek committed
128
129


130
131
132
def _check_flag(flag_name: str,
                other_flag_name: str,
                should_be_set: bool):
133
134
  if should_be_set != bool(FLAGS[flag_name].value):
    verb = 'be' if should_be_set else 'not be'
135
136
    raise ValueError(f'{flag_name} must {verb} set when running with '
                     f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
137
138


Augustin-Zidek's avatar
Augustin-Zidek committed
139
140
141
142
def predict_structure(
    fasta_path: str,
    fasta_name: str,
    output_dir_base: str,
143
    data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
Augustin-Zidek's avatar
Augustin-Zidek committed
144
145
146
    model_runners: Dict[str, model.RunModel],
    amber_relaxer: relax.AmberRelaxation,
    benchmark: bool,
147
148
    random_seed: int,
    is_prokaryote: Optional[bool] = None):
Augustin-Zidek's avatar
Augustin-Zidek committed
149
  """Predicts structure using AlphaFold for the given sequence."""
150
  logging.info('Predicting %s', fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
151
152
153
154
155
156
157
158
159
160
  timings = {}
  output_dir = os.path.join(output_dir_base, fasta_name)
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)
  msa_output_dir = os.path.join(output_dir, 'msas')
  if not os.path.exists(msa_output_dir):
    os.makedirs(msa_output_dir)

  # Get features.
  t_0 = time.time()
161
162
163
164
165
166
167
168
169
  if is_prokaryote is None:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir)
  else:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
170
171
172
173
174
175
176
  timings['features'] = time.time() - t_0

  # Write out features as a pickled dictionary.
  features_output_path = os.path.join(output_dir, 'features.pkl')
  with open(features_output_path, 'wb') as f:
    pickle.dump(feature_dict, f, protocol=4)

177
  unrelaxed_pdbs = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
178
  relaxed_pdbs = {}
179
  ranking_confidences = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
180
181

  # Run the models.
182
183
184
185
  num_models = len(model_runners)
  for model_index, (model_name, model_runner) in enumerate(
      model_runners.items()):
    logging.info('Running model %s on %s', model_name, fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
186
    t_0 = time.time()
187
    model_random_seed = model_index + random_seed * num_models
Augustin-Zidek's avatar
Augustin-Zidek committed
188
    processed_feature_dict = model_runner.process_features(
189
        feature_dict, random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
190
191
192
    timings[f'process_features_{model_name}'] = time.time() - t_0

    t_0 = time.time()
193
194
    prediction_result = model_runner.predict(processed_feature_dict,
                                             random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
195
196
197
    t_diff = time.time() - t_0
    timings[f'predict_and_compile_{model_name}'] = t_diff
    logging.info(
198
199
        'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
        model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
200
201
202

    if benchmark:
      t_0 = time.time()
203
204
205
206
207
208
209
      model_runner.predict(processed_feature_dict,
                           random_seed=model_random_seed)
      t_diff = time.time() - t_0
      timings[f'predict_benchmark_{model_name}'] = t_diff
      logging.info(
          'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
          model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
210

211
    plddt = prediction_result['plddt']
212
    ranking_confidences[model_name] = prediction_result['ranking_confidence']
Augustin-Zidek's avatar
Augustin-Zidek committed
213
214
215
216
217
218

    # Save the model outputs.
    result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
    with open(result_output_path, 'wb') as f:
      pickle.dump(prediction_result, f, protocol=4)

219
220
221
222
223
224
225
    # Add the predicted LDDT in the b-factor column.
    # Note that higher predicted LDDT value means higher model confidence.
    plddt_b_factors = np.repeat(
        plddt[:, None], residue_constants.atom_type_num, axis=-1)
    unrelaxed_protein = protein.from_prediction(
        features=processed_feature_dict,
        result=prediction_result,
226
227
        b_factors=plddt_b_factors,
        remove_leading_feature_dimension=not model_runner.multimer_mode)
Augustin-Zidek's avatar
Augustin-Zidek committed
228

229
    unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
Augustin-Zidek's avatar
Augustin-Zidek committed
230
231
    unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
    with open(unrelaxed_pdb_path, 'w') as f:
232
      f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
233

234
235
236
237
238
    if amber_relaxer:
      # Relax the prediction.
      t_0 = time.time()
      relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
      timings[f'relax_{model_name}'] = time.time() - t_0
Augustin-Zidek's avatar
Augustin-Zidek committed
239

240
      relaxed_pdbs[model_name] = relaxed_pdb_str
Augustin-Zidek's avatar
Augustin-Zidek committed
241

242
243
244
245
246
      # Save the relaxed PDB.
      relaxed_output_path = os.path.join(
          output_dir, f'relaxed_{model_name}.pdb')
      with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)
Augustin-Zidek's avatar
Augustin-Zidek committed
247

248
  # Rank by model confidence and write out relaxed PDBs in rank order.
Augustin-Zidek's avatar
Augustin-Zidek committed
249
250
  ranked_order = []
  for idx, (model_name, _) in enumerate(
251
      sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)):
Augustin-Zidek's avatar
Augustin-Zidek committed
252
253
254
    ranked_order.append(model_name)
    ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
    with open(ranked_output_path, 'w') as f:
255
256
257
258
      if amber_relaxer:
        f.write(relaxed_pdbs[model_name])
      else:
        f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
259
260
261

  ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
  with open(ranking_output_path, 'w') as f:
262
263
264
    label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
    f.write(json.dumps(
        {label: ranking_confidences, 'order': ranked_order}, indent=4))
Augustin-Zidek's avatar
Augustin-Zidek committed
265
266
267
268
269
270
271
272
273
274
275
276

  logging.info('Final timings for %s: %s', fasta_name, timings)

  timings_output_path = os.path.join(output_dir, 'timings.json')
  with open(timings_output_path, 'w') as f:
    f.write(json.dumps(timings, indent=4))


def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')

277
278
279
280
281
282
283
284
  for tool_name in (
      'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
    if not FLAGS[f'{tool_name}_binary_path'].value:
      raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
                       'sure it is installed on your system.')

  use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
  _check_flag('small_bfd_database_path', 'db_preset',
285
              should_be_set=use_small_bfd)
286
  _check_flag('bfd_database_path', 'db_preset',
287
              should_be_set=not use_small_bfd)
288
  _check_flag('uniclust30_database_path', 'db_preset',
289
290
              should_be_set=not use_small_bfd)

291
292
293
294
295
296
297
298
299
  run_multimer_system = 'multimer' in FLAGS.model_preset
  _check_flag('pdb70_database_path', 'model_preset',
              should_be_set=not run_multimer_system)
  _check_flag('pdb_seqres_database_path', 'model_preset',
              should_be_set=run_multimer_system)
  _check_flag('uniprot_database_path', 'model_preset',
              should_be_set=run_multimer_system)

  if FLAGS.model_preset == 'monomer_casp14':
Augustin-Zidek's avatar
Augustin-Zidek committed
300
    num_ensemble = 8
301
302
  else:
    num_ensemble = 1
Augustin-Zidek's avatar
Augustin-Zidek committed
303
304
305
306
307
308

  # Check for duplicate FASTA file names.
  fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
  if len(fasta_names) != len(set(fasta_names)):
    raise ValueError('All FASTA paths must have a unique basename.')

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  # Check that is_prokaryote_list has same number of elements as fasta_paths,
  # and convert to bool.
  if FLAGS.is_prokaryote_list:
    if len(FLAGS.is_prokaryote_list) != len(FLAGS.fasta_paths):
      raise ValueError('--is_prokaryote_list must either be omitted or match '
                       'length of --fasta_paths.')
    is_prokaryote_list = []
    for s in FLAGS.is_prokaryote_list:
      if s in ('true', 'false'):
        is_prokaryote_list.append(s == 'true')
      else:
        raise ValueError('--is_prokaryote_list must contain comma separated '
                         'true or false values.')
  else:  # Default is_prokaryote to False.
    is_prokaryote_list = [False] * len(fasta_names)

  if run_multimer_system:
    template_searcher = hmmsearch.Hmmsearch(
        binary_path=FLAGS.hmmsearch_binary_path,
        hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
        database_path=FLAGS.pdb_seqres_database_path)
    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
  else:
    template_searcher = hhsearch.HHSearch(
        binary_path=FLAGS.hhsearch_binary_path,
        databases=[FLAGS.pdb70_database_path])
    template_featurizer = templates.HhsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)

  monomer_data_pipeline = pipeline.DataPipeline(
Augustin-Zidek's avatar
Augustin-Zidek committed
350
351
352
353
354
355
      jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
      hhblits_binary_path=FLAGS.hhblits_binary_path,
      uniref90_database_path=FLAGS.uniref90_database_path,
      mgnify_database_path=FLAGS.mgnify_database_path,
      bfd_database_path=FLAGS.bfd_database_path,
      uniclust30_database_path=FLAGS.uniclust30_database_path,
356
      small_bfd_database_path=FLAGS.small_bfd_database_path,
357
      template_searcher=template_searcher,
358
      template_featurizer=template_featurizer,
359
360
361
362
363
364
365
366
367
368
369
      use_small_bfd=use_small_bfd,
      use_precomputed_msas=FLAGS.use_precomputed_msas)

  if run_multimer_system:
    data_pipeline = pipeline_multimer.DataPipeline(
        monomer_data_pipeline=monomer_data_pipeline,
        jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
        uniprot_database_path=FLAGS.uniprot_database_path,
        use_precomputed_msas=FLAGS.use_precomputed_msas)
  else:
    data_pipeline = monomer_data_pipeline
Augustin-Zidek's avatar
Augustin-Zidek committed
370
371

  model_runners = {}
372
373
  model_names = config.MODEL_PRESETS[FLAGS.model_preset]
  for model_name in model_names:
Augustin-Zidek's avatar
Augustin-Zidek committed
374
    model_config = config.model_config(model_name)
375
376
377
378
    if run_multimer_system:
      model_config.model.num_ensemble_eval = num_ensemble
    else:
      model_config.data.eval.num_ensemble = num_ensemble
Augustin-Zidek's avatar
Augustin-Zidek committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    model_params = data.get_model_haiku_params(
        model_name=model_name, data_dir=FLAGS.data_dir)
    model_runner = model.RunModel(model_config, model_params)
    model_runners[model_name] = model_runner

  logging.info('Have %d models: %s', len(model_runners),
               list(model_runners.keys()))

  amber_relaxer = relax.AmberRelaxation(
      max_iterations=RELAX_MAX_ITERATIONS,
      tolerance=RELAX_ENERGY_TOLERANCE,
      stiffness=RELAX_STIFFNESS,
      exclude_residues=RELAX_EXCLUDE_RESIDUES,
      max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS)

  random_seed = FLAGS.random_seed
  if random_seed is None:
396
    random_seed = random.randrange(sys.maxsize // len(model_names))
Augustin-Zidek's avatar
Augustin-Zidek committed
397
398
399
  logging.info('Using random seed %d for the data pipeline', random_seed)

  # Predict structure for each of the sequences.
400
401
402
  for i, fasta_path in enumerate(FLAGS.fasta_paths):
    is_prokaryote = is_prokaryote_list[i] if run_multimer_system else None
    fasta_name = fasta_names[i]
Augustin-Zidek's avatar
Augustin-Zidek committed
403
404
405
406
407
408
409
410
    predict_structure(
        fasta_path=fasta_path,
        fasta_name=fasta_name,
        output_dir_base=FLAGS.output_dir,
        data_pipeline=data_pipeline,
        model_runners=model_runners,
        amber_relaxer=amber_relaxer,
        benchmark=FLAGS.benchmark,
411
412
        random_seed=random_seed,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427


if __name__ == '__main__':
  flags.mark_flags_as_required([
      'fasta_paths',
      'output_dir',
      'data_dir',
      'uniref90_database_path',
      'mgnify_database_path',
      'template_mmcif_dir',
      'max_template_date',
      'obsolete_pdbs_path',
  ])

  app.run(main)