features.py 3.61 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Code to generate processed features."""
import copy
from typing import List, Mapping, Tuple
18

Tom Ward's avatar
Tom Ward committed
19
20
from alphafold.model.tf import input_pipeline
from alphafold.model.tf import proteins_dataset
21

Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import ml_collections
import numpy as np
import tensorflow.compat.v1 as tf

FeatureDict = Mapping[str, np.ndarray]


def make_data_config(
    config: ml_collections.ConfigDict,
    num_res: int,
    ) -> Tuple[ml_collections.ConfigDict, List[str]]:
  """Makes a data config for the input pipeline."""
  cfg = copy.deepcopy(config.data)

  feature_names = cfg.common.unsupervised_features
  if cfg.common.use_templates:
    feature_names += cfg.common.template_features

  with cfg.unlocked():
    cfg.eval.crop_size = num_res

  return cfg, feature_names


def tf_example_to_features(tf_example: tf.train.Example,
                           config: ml_collections.ConfigDict,
                           random_seed: int = 0) -> FeatureDict:
  """Converts tf_example to numpy feature dictionary."""
  num_res = int(tf_example.features.feature['seq_length'].int64_list.value[0])
  cfg, feature_names = make_data_config(config, num_res=num_res)

  if 'deletion_matrix_int' in set(tf_example.features.feature):
    deletion_matrix_int = (
        tf_example.features.feature['deletion_matrix_int'].int64_list.value)
    feat = tf.train.Feature(float_list=tf.train.FloatList(
        value=map(float, deletion_matrix_int)))
    tf_example.features.feature['deletion_matrix'].CopyFrom(feat)
    del tf_example.features.feature['deletion_matrix_int']

  tf_graph = tf.Graph()
  with tf_graph.as_default(), tf.device('/device:CPU:0'):
    tf.compat.v1.set_random_seed(random_seed)
    tensor_dict = proteins_dataset.create_tensor_dict(
        raw_data=tf_example.SerializeToString(),
        features=feature_names)
    processed_batch = input_pipeline.process_tensors_from_config(
        tensor_dict, cfg)

  tf_graph.finalize()

  with tf.Session(graph=tf_graph) as sess:
    features = sess.run(processed_batch)

  return {k: v for k, v in features.items() if v.dtype != 'O'}


def np_example_to_features(np_example: FeatureDict,
                           config: ml_collections.ConfigDict,
                           random_seed: int = 0) -> FeatureDict:
  """Preprocesses NumPy feature dict using TF pipeline."""
  np_example = dict(np_example)
  num_res = int(np_example['seq_length'][0])
  cfg, feature_names = make_data_config(config, num_res=num_res)

  if 'deletion_matrix_int' in np_example:
    np_example['deletion_matrix'] = (
        np_example.pop('deletion_matrix_int').astype(np.float32))

  tf_graph = tf.Graph()
  with tf_graph.as_default(), tf.device('/device:CPU:0'):
    tf.compat.v1.set_random_seed(random_seed)
    tensor_dict = proteins_dataset.np_to_tensor_dict(
        np_example=np_example, features=feature_names)

    processed_batch = input_pipeline.process_tensors_from_config(
        tensor_dict, cfg)

  tf_graph.finalize()

  with tf.Session(graph=tf_graph) as sess:
    features = sess.run(processed_batch)

  return {k: v for k, v in features.items() if v.dtype != 'O'}