pipeline.py 9.75 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for building the input features for the AlphaFold model."""

import os
18
from typing import Any, Mapping, MutableMapping, Optional, Sequence, Union
19
from absl import logging
Augustin-Zidek's avatar
Augustin-Zidek committed
20
from alphafold.common import residue_constants
21
from alphafold.data import msa_identifiers
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
24
25
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
26
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
27
from alphafold.data.tools import jackhmmer
Tom Ward's avatar
Tom Ward committed
28
29
30
import numpy as np

# Internal import (7716).
Augustin-Zidek's avatar
Augustin-Zidek committed
31

32
33
FeatureDict = MutableMapping[str, np.ndarray]
TemplateSearcher = Union[hhsearch.HHSearch, hmmsearch.Hmmsearch]
Augustin-Zidek's avatar
Augustin-Zidek committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def make_sequence_features(
    sequence: str, description: str, num_res: int) -> FeatureDict:
  """Constructs a feature dict of sequence features."""
  features = {}
  features['aatype'] = residue_constants.sequence_to_onehot(
      sequence=sequence,
      mapping=residue_constants.restype_order_with_x,
      map_unknown_to_x=True)
  features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
  features['domain_name'] = np.array([description.encode('utf-8')],
                                     dtype=np.object_)
  features['residue_index'] = np.array(range(num_res), dtype=np.int32)
  features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
  features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
  return features


53
def make_msa_features(msas: Sequence[parsers.Msa]) -> FeatureDict:
Augustin-Zidek's avatar
Augustin-Zidek committed
54
55
56
57
58
59
  """Constructs a feature dict of MSA features."""
  if not msas:
    raise ValueError('At least one MSA must be provided.')

  int_msa = []
  deletion_matrix = []
60
61
  uniprot_accession_ids = []
  species_ids = []
Augustin-Zidek's avatar
Augustin-Zidek committed
62
63
64
65
  seen_sequences = set()
  for msa_index, msa in enumerate(msas):
    if not msa:
      raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
66
    for sequence_index, sequence in enumerate(msa.sequences):
Augustin-Zidek's avatar
Augustin-Zidek committed
67
68
69
70
71
      if sequence in seen_sequences:
        continue
      seen_sequences.add(sequence)
      int_msa.append(
          [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
72
73
74
75
76
77
78
79
      deletion_matrix.append(msa.deletion_matrix[sequence_index])
      identifiers = msa_identifiers.get_identifiers(
          msa.descriptions[sequence_index])
      uniprot_accession_ids.append(
          identifiers.uniprot_accession_id.encode('utf-8'))
      species_ids.append(identifiers.species_id.encode('utf-8'))

  num_res = len(msas[0].sequences[0])
Augustin-Zidek's avatar
Augustin-Zidek committed
80
81
82
83
84
85
  num_alignments = len(int_msa)
  features = {}
  features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
  features['msa'] = np.array(int_msa, dtype=np.int32)
  features['num_alignments'] = np.array(
      [num_alignments] * num_res, dtype=np.int32)
86
87
88
  features['msa_uniprot_accession_identifiers'] = np.array(
      uniprot_accession_ids, dtype=np.object_)
  features['msa_species_identifiers'] = np.array(species_ids, dtype=np.object_)
Augustin-Zidek's avatar
Augustin-Zidek committed
89
90
91
  return features


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def run_msa_tool(msa_runner, input_fasta_path: str, msa_out_path: str,
                 msa_format: str, use_precomputed_msas: bool,
                 ) -> Mapping[str, Any]:
  """Runs an MSA tool, checking if output already exists first."""
  if not use_precomputed_msas or not os.path.exists(msa_out_path):
    result = msa_runner.query(input_fasta_path)[0]
    with open(msa_out_path, 'w') as f:
      f.write(result[msa_format])
  else:
    logging.warning('Reading MSA from file %s', msa_out_path)
    with open(msa_out_path, 'r') as f:
      result = {msa_format: f.read()}
  return result


Augustin-Zidek's avatar
Augustin-Zidek committed
107
108
109
110
111
112
113
114
class DataPipeline:
  """Runs the alignment tools and assembles the input features."""

  def __init__(self,
               jackhmmer_binary_path: str,
               hhblits_binary_path: str,
               uniref90_database_path: str,
               mgnify_database_path: str,
115
116
117
               bfd_database_path: Optional[str],
               uniclust30_database_path: Optional[str],
               small_bfd_database_path: Optional[str],
118
               template_searcher: TemplateSearcher,
Augustin-Zidek's avatar
Augustin-Zidek committed
119
               template_featurizer: templates.TemplateHitFeaturizer,
120
               use_small_bfd: bool,
Augustin-Zidek's avatar
Augustin-Zidek committed
121
               mgnify_max_hits: int = 501,
122
123
124
               uniref_max_hits: int = 10000,
               use_precomputed_msas: bool = False):
    """Initializes the data pipeline."""
125
    self._use_small_bfd = use_small_bfd
Augustin-Zidek's avatar
Augustin-Zidek committed
126
127
128
    self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=uniref90_database_path)
129
130
131
132
133
134
135
136
    if use_small_bfd:
      self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
          binary_path=jackhmmer_binary_path,
          database_path=small_bfd_database_path)
    else:
      self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
          binary_path=hhblits_binary_path,
          databases=[bfd_database_path, uniclust30_database_path])
Augustin-Zidek's avatar
Augustin-Zidek committed
137
138
139
    self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=mgnify_database_path)
140
    self.template_searcher = template_searcher
Augustin-Zidek's avatar
Augustin-Zidek committed
141
142
143
    self.template_featurizer = template_featurizer
    self.mgnify_max_hits = mgnify_max_hits
    self.uniref_max_hits = uniref_max_hits
144
    self.use_precomputed_msas = use_precomputed_msas
Augustin-Zidek's avatar
Augustin-Zidek committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158

  def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
    """Runs alignment tools on the input sequence and creates features."""
    with open(input_fasta_path) as f:
      input_fasta_str = f.read()
    input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
    if len(input_seqs) != 1:
      raise ValueError(
          f'More than one input sequence found in {input_fasta_path}.')
    input_sequence = input_seqs[0]
    input_description = input_descs[0]
    num_res = len(input_sequence)

    uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
159
160
161
    jackhmmer_uniref90_result = run_msa_tool(
        self.jackhmmer_uniref90_runner, input_fasta_path, uniref90_out_path,
        'sto', self.use_precomputed_msas)
Augustin-Zidek's avatar
Augustin-Zidek committed
162
    mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    jackhmmer_mgnify_result = run_msa_tool(
        self.jackhmmer_mgnify_runner, input_fasta_path, mgnify_out_path, 'sto',
        self.use_precomputed_msas)

    msa_for_templates = jackhmmer_uniref90_result['sto']
    msa_for_templates = parsers.truncate_stockholm_msa(
        msa_for_templates, max_sequences=self.uniref_max_hits)
    msa_for_templates = parsers.deduplicate_stockholm_msa(
        msa_for_templates)
    msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa(
        msa_for_templates)

    if self.template_searcher.input_format == 'sto':
      pdb_templates_result = self.template_searcher.query(msa_for_templates)
    elif self.template_searcher.input_format == 'a3m':
      uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates)
      pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m)
    else:
      raise ValueError('Unrecognized template input format: '
                       f'{self.template_searcher.input_format}')
183

184
185
186
187
    pdb_hits_out_path = os.path.join(
        msa_output_dir, f'pdb_hits.{self.template_searcher.output_format}')
    with open(pdb_hits_out_path, 'w') as f:
      f.write(pdb_templates_result)
Augustin-Zidek's avatar
Augustin-Zidek committed
188

189
190
191
192
    uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result['sto'])
    uniref90_msa = uniref90_msa.truncate(max_seqs=self.uniref_max_hits)
    mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result['sto'])
    mgnify_msa = mgnify_msa.truncate(max_seqs=self.mgnify_max_hits)
Augustin-Zidek's avatar
Augustin-Zidek committed
193

194
195
    pdb_template_hits = self.template_searcher.get_template_hits(
        output_string=pdb_templates_result, input_sequence=input_sequence)
Augustin-Zidek's avatar
Augustin-Zidek committed
196

197
198
199
200
201
202
    if self._use_small_bfd:
      bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.sto')
      jackhmmer_small_bfd_result = run_msa_tool(
          self.jackhmmer_small_bfd_runner, input_fasta_path, bfd_out_path,
          'sto', self.use_precomputed_msas)
      bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result['sto'])
203
204
    else:
      bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
205
206
207
208
      hhblits_bfd_uniclust_result = run_msa_tool(
          self.hhblits_bfd_uniclust_runner, input_fasta_path, bfd_out_path,
          'a3m', self.use_precomputed_msas)
      bfd_msa = parsers.parse_a3m(hhblits_bfd_uniclust_result['a3m'])
Augustin-Zidek's avatar
Augustin-Zidek committed
209
210
211

    templates_result = self.template_featurizer.get_templates(
        query_sequence=input_sequence,
212
        hits=pdb_template_hits)
Augustin-Zidek's avatar
Augustin-Zidek committed
213
214
215
216
217
218

    sequence_features = make_sequence_features(
        sequence=input_sequence,
        description=input_description,
        num_res=num_res)

219
    msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa))
Augustin-Zidek's avatar
Augustin-Zidek committed
220

221
222
223
224
225
226
227
228
229
    logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))
    logging.info('BFD MSA size: %d sequences.', len(bfd_msa))
    logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))
    logging.info('Final (deduplicated) MSA size: %d sequences.',
                 msa_features['num_alignments'][0])
    logging.info('Total number of templates (NB: this can include bad '
                 'templates and is later filtered to top 4): %d.',
                 templates_result.features['template_domain_names'].shape[0])

Augustin-Zidek's avatar
Augustin-Zidek committed
230
    return {**sequence_features, **msa_features, **templates_result.features}