pipeline.py 7.6 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for building the input features for the AlphaFold model."""

import os
18
from typing import Mapping, Optional, Sequence
Augustin-Zidek's avatar
Augustin-Zidek committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

import numpy as np

# Internal import (7716).

from alphafold.common import residue_constants
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
from alphafold.data.tools import jackhmmer

FeatureDict = Mapping[str, np.ndarray]


def make_sequence_features(
    sequence: str, description: str, num_res: int) -> FeatureDict:
  """Constructs a feature dict of sequence features."""
  features = {}
  features['aatype'] = residue_constants.sequence_to_onehot(
      sequence=sequence,
      mapping=residue_constants.restype_order_with_x,
      map_unknown_to_x=True)
  features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
  features['domain_name'] = np.array([description.encode('utf-8')],
                                     dtype=np.object_)
  features['residue_index'] = np.array(range(num_res), dtype=np.int32)
  features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
  features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
  return features


def make_msa_features(
    msas: Sequence[Sequence[str]],
    deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict:
  """Constructs a feature dict of MSA features."""
  if not msas:
    raise ValueError('At least one MSA must be provided.')

  int_msa = []
  deletion_matrix = []
  seen_sequences = set()
  for msa_index, msa in enumerate(msas):
    if not msa:
      raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
    for sequence_index, sequence in enumerate(msa):
      if sequence in seen_sequences:
        continue
      seen_sequences.add(sequence)
      int_msa.append(
          [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
      deletion_matrix.append(deletion_matrices[msa_index][sequence_index])

  num_res = len(msas[0][0])
  num_alignments = len(int_msa)
  features = {}
  features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
  features['msa'] = np.array(int_msa, dtype=np.int32)
  features['num_alignments'] = np.array(
      [num_alignments] * num_res, dtype=np.int32)
  return features


class DataPipeline:
  """Runs the alignment tools and assembles the input features."""

  def __init__(self,
               jackhmmer_binary_path: str,
               hhblits_binary_path: str,
               hhsearch_binary_path: str,
               uniref90_database_path: str,
               mgnify_database_path: str,
91
92
93
               bfd_database_path: Optional[str],
               uniclust30_database_path: Optional[str],
               small_bfd_database_path: Optional[str],
Augustin-Zidek's avatar
Augustin-Zidek committed
94
95
               pdb70_database_path: str,
               template_featurizer: templates.TemplateHitFeaturizer,
96
               use_small_bfd: bool,
Augustin-Zidek's avatar
Augustin-Zidek committed
97
98
99
               mgnify_max_hits: int = 501,
               uniref_max_hits: int = 10000):
    """Constructs a feature dict for a given FASTA file."""
100
    self._use_small_bfd = use_small_bfd
Augustin-Zidek's avatar
Augustin-Zidek committed
101
102
103
    self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=uniref90_database_path)
104
105
106
107
108
109
110
111
    if use_small_bfd:
      self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
          binary_path=jackhmmer_binary_path,
          database_path=small_bfd_database_path)
    else:
      self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
          binary_path=hhblits_binary_path,
          databases=[bfd_database_path, uniclust30_database_path])
Augustin-Zidek's avatar
Augustin-Zidek committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=mgnify_database_path)
    self.hhsearch_pdb70_runner = hhsearch.HHSearch(
        binary_path=hhsearch_binary_path,
        databases=[pdb70_database_path])
    self.template_featurizer = template_featurizer
    self.mgnify_max_hits = mgnify_max_hits
    self.uniref_max_hits = uniref_max_hits

  def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
    """Runs alignment tools on the input sequence and creates features."""
    with open(input_fasta_path) as f:
      input_fasta_str = f.read()
    input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
    if len(input_seqs) != 1:
      raise ValueError(
          f'More than one input sequence found in {input_fasta_path}.')
    input_sequence = input_seqs[0]
    input_description = input_descs[0]
    num_res = len(input_sequence)

    jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query(
135
        input_fasta_path)[0]
Augustin-Zidek's avatar
Augustin-Zidek committed
136
    jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query(
137
        input_fasta_path)[0]
Augustin-Zidek's avatar
Augustin-Zidek committed
138
139
140
141
142
143
144
145
146
147
148
149
150

    uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(
        jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits)
    hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m)

    uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
    with open(uniref90_out_path, 'w') as f:
      f.write(jackhmmer_uniref90_result['sto'])

    mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
    with open(mgnify_out_path, 'w') as f:
      f.write(jackhmmer_mgnify_result['sto'])

151
    uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm(
Augustin-Zidek's avatar
Augustin-Zidek committed
152
        jackhmmer_uniref90_result['sto'])
153
    mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm(
Augustin-Zidek's avatar
Augustin-Zidek committed
154
155
156
157
158
        jackhmmer_mgnify_result['sto'])
    hhsearch_hits = parsers.parse_hhr(hhsearch_result)
    mgnify_msa = mgnify_msa[:self.mgnify_max_hits]
    mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits]

159
160
161
    if self._use_small_bfd:
      jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query(
          input_fasta_path)[0]
Augustin-Zidek's avatar
Augustin-Zidek committed
162

163
164
165
      bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m')
      with open(bfd_out_path, 'w') as f:
        f.write(jackhmmer_small_bfd_result['sto'])
Augustin-Zidek's avatar
Augustin-Zidek committed
166

167
168
169
170
171
172
173
174
175
176
177
178
      bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm(
          jackhmmer_small_bfd_result['sto'])
    else:
      hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query(
          input_fasta_path)

      bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
      with open(bfd_out_path, 'w') as f:
        f.write(hhblits_bfd_uniclust_result['a3m'])

      bfd_msa, bfd_deletion_matrix = parsers.parse_a3m(
          hhblits_bfd_uniclust_result['a3m'])
Augustin-Zidek's avatar
Augustin-Zidek committed
179
180
181
182
183

    templates_result = self.template_featurizer.get_templates(
        query_sequence=input_sequence,
        query_pdb_code=None,
        query_release_date=None,
184
        hits=hhsearch_hits)
Augustin-Zidek's avatar
Augustin-Zidek committed
185
186
187
188
189
190
191
192
193
194
195
196
197

    sequence_features = make_sequence_features(
        sequence=input_sequence,
        description=input_description,
        num_res=num_res)

    msa_features = make_msa_features(
        msas=(uniref90_msa, bfd_msa, mgnify_msa),
        deletion_matrices=(uniref90_deletion_matrix,
                           bfd_deletion_matrix,
                           mgnify_deletion_matrix))

    return {**sequence_features, **msa_features, **templates_result.features}