depth_up_scaling.py 6.18 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
Use this file for scaling your model with a method called depth up-scaling (DUS).

More details: https://arxiv.org/abs/2312.15166
"""

import argparse
import json
import os
import torch
from allamo.logging import configure_logger, logger
from allamo.train_utils import (
    get_model_checkpoint_path,
    get_config_checkpoint_path,
)

def prepare_layer_keys_mapping(n_layers, last_layers_to_drop, first_layers_to_drop):
    mapping_pairs = []
    bottom_layers = n_layers - last_layers_to_drop
    top_layers = n_layers - first_layers_to_drop
    
    # bottom layers
    for layer_i in range(bottom_layers):
        mapping_pairs.append((layer_i, layer_i))
     
    # top layers
    for layer_i in range(top_layers):
        src_layer_idx = first_layers_to_drop + layer_i
        dest_layer_idx = bottom_layers + layer_i
        mapping_pairs.append((dest_layer_idx, src_layer_idx))
    
    return mapping_pairs

def depth_up_scale_model(input_dir_path, input_checkpoint_name_base, output_dir_path, output_checkpoint_name_base, last_layers_to_drop, first_layers_to_drop, bfloat16):
    os.makedirs(output_dir_path, exist_ok=True)
    
    logger.info(f"loading checkpoint from {input_dir_path}...")
    with open(get_config_checkpoint_path(input_checkpoint_name_base, input_dir_path), "r", encoding="utf-8") as f:
        config_checkpoint = json.load(f)
    model_checkpoint = torch.load(get_model_checkpoint_path(input_checkpoint_name_base, input_dir_path), map_location='cpu')
    
    unwanted_prefix = '_orig_mod.'
    for k,v in list(model_checkpoint.items()):
        if k.startswith(unwanted_prefix):
            model_checkpoint[k[len(unwanted_prefix):]] = model_checkpoint.pop(k)
    
    state_dict = {
        "tok_embeddings.weight": model_checkpoint["tok_embeddings.weight"],
        "norm.weight": model_checkpoint["norm.weight"],
        "lm_head.weight": model_checkpoint["lm_head.weight"],
    }
    
    layer_mapping_pairs = prepare_layer_keys_mapping(config_checkpoint['model_args']['n_layer'], last_layers_to_drop, first_layers_to_drop)
    
    # you can customize the mapping here, e.g., replace some layers with others
    
    for dest_layer_idx, src_layer_idx in layer_mapping_pairs:
        logger.info(f"copying weights from layer {src_layer_idx} to layer {dest_layer_idx}")
        state_dict[f"layers.{dest_layer_idx}.attention.q_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.attention.q_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.attention.k_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.attention.k_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.attention.v_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.attention.v_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.attention.c_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.attention.c_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.feed_forward.gate_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.feed_forward.gate_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.feed_forward.down_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.feed_forward.down_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.feed_forward.up_proj.weight"] = model_checkpoint[f"layers.{src_layer_idx}.feed_forward.up_proj.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.attention_norm.weight"] = model_checkpoint[f"layers.{src_layer_idx}.attention_norm.weight"].clone()
        state_dict[f"layers.{dest_layer_idx}.ffn_norm.weight"] = model_checkpoint[f"layers.{src_layer_idx}.ffn_norm.weight"].clone()
    
    if bfloat16:
        logger.info("converting weights to bfloat16")
    param_count = 0
    param_bytes = 0
    for k, v in state_dict.items():
        if bfloat16:
            v = v.to(torch.bfloat16)
            state_dict[k] = v
        param_count += v.numel()
        param_bytes += v.numel() * v.element_size()
    
    config_checkpoint['model_args']['n_layer'] = len(layer_mapping_pairs)
    param_count /= 1e6
    param_bytes /= 1024**2
    logger.info(f"New model layers: {config_checkpoint['model_args']['n_layer']}. Model parameters: {param_count:.2f}M. Est. Size: {param_bytes:.3f}MB")
            
    ckpt_file_path = get_config_checkpoint_path(output_checkpoint_name_base, output_dir_path)
    logger.info(f"saving config checkpoint to {ckpt_file_path}")
    with open(ckpt_file_path, "w", encoding="utf-8") as f:
        json.dump(config_checkpoint, f, indent=4, ensure_ascii=False)
    ckpt_file_path = get_model_checkpoint_path(output_checkpoint_name_base, output_dir_path)
    logger.info(f"saving model checkpoint to {ckpt_file_path}")
    torch.save(state_dict, ckpt_file_path)
    logger.info(f"checkpoint files saved in {output_dir_path}")


def main():
    configure_logger()
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of ALLaMo weights, which contains a checkpoint file",
    )
    parser.add_argument(
        "--input_checkpoint_name_base",
        default='ckpt',
        help="Source checkpoint file name base",
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write up-scaled model",
    )
    parser.add_argument(
        "--output_checkpoint_name_base",
        default='up-scaled_ckpt',
        help="Output checkpoint file name base",
    )
    parser.add_argument(
        "--last_layers_to_drop", type=int,
        help="Number of last layers to drop from the bottom copy of the model",
    )
    parser.add_argument(
        "--first_layers_to_drop", type=int,
        help="Number of first layers to drop from the top copy of the model",
    )
    parser.add_argument(
        "--bfloat16", type=bool,
        help="Convert weights to bfloaf16",
    )
    args = parser.parse_args()
    depth_up_scale_model(
        input_dir_path=args.input_dir,
        input_checkpoint_name_base=args.input_checkpoint_name_base,
        output_dir_path=args.output_dir,
        output_checkpoint_name_base=args.output_checkpoint_name_base,
        last_layers_to_drop=args.last_layers_to_drop,
        first_layers_to_drop=args.first_layers_to_drop,
        bfloat16=args.bfloat16
    )

if __name__ == "__main__":
    main()