prepare_sft_dataset.py 20.3 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
"""
Use this file to create a dataset for Supervised Fine-Tuning (SFT) training

The script performs the following steps:
1. Reads the input JSONL file with dialogues (single or multi-turn)
2. Applies the OpenChatML or Llama2 chat template to each dialogue
3. Tokenizes the formatted dialogues
4. Generates token weights
5. Optionally packs dialogues to maximize GPU utilization
6. Saves the processed data in a binary format
7. Generates and saves summary statistics for the dataset

Example record with signe-turn dialogue:
```json
{"messages": [{"role": "user", "content": "1+2=?"}, {"role": "assistant", "content": "3"}]}
```

Example record with multi-turn dialogue:
```json
{"messages": [{"role": "user", "content": "1+2=?"}, {"role": "assistant", "content": "3"}, {"role": "user", "content": "2+2=?"}, {"role": "assistant", "content": "4"}]}
```
"""

import argparse
import concurrent.futures
import joblib
import json
import numpy as np
import os
import pyarrow as pa
import pyarrow.parquet as pq
import random
import time
from collections import Counter
from itertools import chain
from tqdm import tqdm
from transformers import AutoTokenizer
from allamo.logging import configure_logger, logger

MIN_WEIGHT = 0.001

def tokenize_openchatml_conversation(data, tokenizer, ignore_index):
    conversation = data["messages"]
    weight = data["weight"]
    result = {'input_ids': [], 'target_ids': []}
    if weight > MIN_WEIGHT:
        result['target_weights'] = []

    last_idx = len(conversation) - 1
    for idx, entry in enumerate(conversation):
        if entry["role"] == 'assistant':
            pre_content = '<|im_start|>assistant\n'
            pre_input_ids = tokenizer.encode(pre_content, add_special_tokens=False)
            pre_input_ids_len = len(pre_input_ids)
            
            content = entry['content'] + '<|im_end|>\n'
            if idx == last_idx:
                content += "</s>"
            full_input_ids = tokenizer.encode(pre_content + content, add_special_tokens=False)
            
            if full_input_ids[:pre_input_ids_len] == pre_input_ids:
                result['input_ids'].extend(full_input_ids)
                result['target_ids'].extend(list(
                    ignore_index if i < pre_input_ids_len else full_input_ids[i] for i in range(len(full_input_ids))
                ))
                if weight > 0:
                    result['target_weights'].extend(list(
                        0.0 if i < pre_input_ids_len else weight for i in range(len(full_input_ids))
                    ))
            else:
                logger.warning("Tokenization inconsistency detected. Performing separate tokenization")
                content_input_ids = tokenizer.encode(content, add_special_tokens=False)
                result['input_ids'].extend(pre_input_ids)
                result['input_ids'].extend(content_input_ids)
                result['target_ids'].extend(list(ignore_index for _ in range(pre_input_ids_len)))
                result['target_ids'].extend(content_input_ids)
                if weight > 0:
                    result['target_weights'].extend(list(0.0 for _ in range(pre_input_ids_len)))
                    result['target_weights'].extend(list(weight for _ in range(len(content_input_ids))))
        else:
            content = "<s><|im_start|>" if idx == 0 else "<|im_start|>"
            content += entry["role"] + '\n' + entry["content"] + '<|im_end|>\n'
            input_ids = tokenizer.encode(content, add_special_tokens=False)
            result['input_ids'].extend(input_ids)
            result['target_ids'].extend(list(ignore_index for _ in range(len(input_ids))))
            if weight > 0:
                result['target_weights'].extend(list(0.0 for _ in range(len(input_ids))))
    assert len(result['input_ids']) == len(result['target_ids'])
    if weight > 0:
        assert len(result['input_ids']) == len(result['target_weights'])
    return result

def tokenize_llama2_conversation(data, tokenizer, ignore_index):
    conversation = data["messages"]
    weight = data["weight"]
    result = {'input_ids': [], 'target_ids': []}
    if weight > MIN_WEIGHT:
        result['target_weights'] = []
        
    if conversation[0]['role'] == 'system':
        sys_message = f"<<SYS>>\n{conversation[0]['content']}\n<</SYS>>\n\n"
        conversation = conversation[1:]
    else:
        sys_message = ''
        
    for idx, entry in enumerate(conversation):
        if entry['role'] == 'user':
            content = '<s>[INST] '+sys_message if idx <= 1 else '[INST] '
            content += entry['content'] + ' [/INST]'
            input_ids = tokenizer.encode(content, add_special_tokens=False)
            result['input_ids'].extend(input_ids)
            result['target_ids'].extend(list(ignore_index for _ in range(len(input_ids))))
            if weight > 0:
                result['target_weights'].extend(list(0.0 for _ in range(len(input_ids))))
        elif entry['role'] == 'assistant':
            content = ' ' + entry['content'] + '</s>'
            input_ids = tokenizer.encode(content, add_special_tokens=False)
            result['input_ids'].extend(input_ids)
            result['target_ids'].extend(input_ids)
            if weight > 0:
                result['target_weights'].extend(
                    list(weight for _ in range(len(input_ids)))
                )
    assert len(result['input_ids']) == len(result['target_ids'])
    if weight > 0:
        assert len(result['input_ids']) == len(result['target_weights'])
    return result

def tokenize_conversation(data, tokenizer, ignore_index, chat_format):
    if chat_format == 'OpenChatML':
        return tokenize_openchatml_conversation(data, tokenizer, ignore_index)
    elif chat_format == 'llama2':
        return tokenize_llama2_conversation(data, tokenizer, ignore_index)
    else:
        raise Exception(f"Unsupported chat format: {chat_format}")
    
def convert_to_numpy_array(pylist, target_length, pad_token, data_type):
    padded = np.full(target_length, pad_token, dtype=data_type)
    padded[:len(pylist)] = pylist
    return padded

def process_chunk(args):
    chunk_file, pack, tokenizer_path, chat_format, block_size, ignore_index, pad_token_id, min_unmasked_tokens = args
    max_sample_size = block_size + 1
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    data_dtype = np.int16 if len(tokenizer) < 32767 else np.int32
    truncated = 0
    rejected = 0
    data = []
    pa_table = pq.read_table(chunk_file)
    for i in range(len(pa_table['rows'])):
        cols = pa_table['rows'][i].as_py().split(';', 1)
        messages = json.loads(cols[1])
        if 'messages' not in messages:
            rejected += 1
        else:
            weight = messages['weight'] if "weight" in messages and messages['weight'] > 0 else float(cols[0])
            sample = tokenize_conversation({
                "messages": messages['messages'], 
                "weight": weight
            }, tokenizer, ignore_index, chat_format)
            
            input_ids_len = len(sample['input_ids'])
            if input_ids_len > max_sample_size:
                sample['input_ids'] = sample['input_ids'][:max_sample_size]
                sample['target_ids'] = sample['target_ids'][:max_sample_size]
                if 'target_weights' in sample:
                    sample['target_weights'] = sample['target_weights'][:max_sample_size]
                truncated += 1
            data.append(sample)
    del pa_table
    
    created = len(data)
    packed = 0
    
    if pack:
        packed_data = []
        while data:
            instructions_buffer = data.pop()
            instructions_buffer["seq_lens"] = [len(instructions_buffer["input_ids"])]
            while len(data) > 0 and len(instructions_buffer["input_ids"]) + len(data[-1]["input_ids"]) <= max_sample_size:
                instruction = data.pop()
                instructions_buffer["input_ids"].extend(instruction["input_ids"])
                instructions_buffer["target_ids"].extend(instruction["target_ids"])
                if "target_weights" in instructions_buffer:
                    instructions_buffer["target_weights"].extend(instruction["target_weights"])
                instructions_buffer["seq_lens"].append(len(instruction["input_ids"]))
            packed_data.append(instructions_buffer)
        packed = len(packed_data)
        data = packed_data
        del packed_data
        
    result = []
    for sample in data:
        padding = max_sample_size - len(sample['input_ids'])
        if pad_token_id >= 0:
            assert padding >= 0
            if padding > 0:
                if padding > 1:
                    sample["input_ids"] = convert_to_numpy_array(sample["input_ids"], block_size, pad_token_id, data_dtype)
                else:
                    sample["input_ids"] = np.array(sample["input_ids"], dtype=data_dtype)
                sample["target_ids"] = convert_to_numpy_array(sample["target_ids"][1:], block_size, ignore_index, data_dtype)
                if "target_weights" in sample:
                    sample["target_weights"] = convert_to_numpy_array(sample["target_weights"][1:], block_size, 0, np.float16)
            else:
                assert len(sample["input_ids"]) == max_sample_size
                assert len(sample["target_ids"]) == max_sample_size
                if "target_weights" in sample:
                    assert len(sample["target_weights"]) == max_sample_size
                if "seq_lens" in sample:
                    assert sum(sample["seq_lens"]) == max_sample_size
                sample["input_ids"] = np.array(sample["input_ids"][:-1], dtype=data_dtype)
                sample["target_ids"] = np.array(sample["target_ids"][1:], dtype=data_dtype)
                if "target_weights" in sample:
                    sample["target_weights"] = np.array(sample["target_weights"][1:], dtype=np.float16)
                if "seq_lens" in sample:
                    sample["seq_lens"][-1] -= 1
        else:
            expected_len = len(sample['input_ids']) - 1 if padding > 0 else block_size
            sample["input_ids"] = np.array(sample["input_ids"][:expected_len], dtype=data_dtype)
            sample["target_ids"] = np.array(sample["target_ids"][1:expected_len+1], dtype=data_dtype)
            if "target_weights" in sample:
                sample["target_weights"] = np.array(sample["target_weights"][1:expected_len+1], dtype=np.float16)
        
        assert isinstance(sample["input_ids"], np.ndarray)
        assert isinstance(sample["target_ids"], np.ndarray)
        if np.sum(sample['target_ids'] != ignore_index) >= min_unmasked_tokens:
            result.append(sample)
        else:
            rejected += 1
    
    with open(chunk_file, 'wb') as f:
        joblib.dump(result, f)
    
    return {'created': created, 'truncated': truncated, 'rejected': rejected, 'packed': packed}

def save_chunk_for_rank(rows, rank, output_dir, chunk_files):
    chunk_file = os.path.join(output_dir, f"chunk_{rank:05}.tmp")
    pa_array = pa.array(rows)
    pa_table = pa.table([pa_array], names=['rows'])
    pq.write_table(pa_table, chunk_file)
    chunk_files.append(chunk_file)
    
def format_seconds_as_time(seconds):
    hours, remainder = divmod(seconds, 3600)
    minutes, seconds = divmod(remainder, 60)
    return f"{int(hours)}:{int(minutes):02}:{int(seconds):02}"

def create_sample_for(input_ids, target_weights, seq_lens, data_dtype):
    sample = {'input_ids': np.array(input_ids, dtype=data_dtype)}
    if target_weights and isinstance(target_weights, list):
        sample['target_weights'] = np.array(target_weights, dtype=np.float16)
    if seq_lens and isinstance(seq_lens, list):
        sample['seq_lens'] = seq_lens
    return sample

if __name__ == "__main__":
    configure_logger()
    parser = argparse.ArgumentParser(description='Tokenize dialogues with weights')
    parser.add_argument("-c", "--config_path", help="Config file with a list of input files")
    parser.add_argument("-f", "--input_file", help="Input file")
    parser.add_argument("-i", "--input_dir", help="Directory with input jsonl files")
    parser.add_argument("-o", "--output_dir", help="Output dir")
    parser.add_argument("-n", "--num_output_files", type=int, default=1, help="Number of final output files")
    parser.add_argument("-t", "--tokenizer_path", required=True, help="Tokenizer path")
    parser.add_argument("-w", "--default_weight", type=float, default=-1, help="Default weight for input files")
    parser.add_argument("-p", "--max_workers", type=int, default=20, help="The max number of processes")
    parser.add_argument("-b", "--block_size", type=int, default=4096, help="Block/context size")
    parser.add_argument('--chat_format', type=str, choices=['OpenChatML', 'llama2'], default='OpenChatML', help='Chat format')
    parser.add_argument("--min_unmasked_tokens", type=int, default=1, help="Minimum number of unmasked target tokens required for a sample to be included in training")
    parser.add_argument("--ignore_index", type=int, default=-100, help="Specifies a target value that is ignored in loss computation. Default is -100")
    parser.add_argument("--pad_token_id", type=int, default=0, help="Specifies the padding token id. Default is 0")
    parser.add_argument("--chunk_size", type=int, default=100000, help="Chunk size")
    parser.add_argument('--save_samples', action='store_true', help='Save some samples')
    parser.add_argument('--pack', action='store_true', help='Pack')
    parser.add_argument('--verbose', action='store_true', help='Be verbose')
    args = parser.parse_args()

    os.makedirs(args.output_dir, exist_ok=True)
    
    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
    logger.info(f"Loaded tokenizer with vocab size {len(tokenizer)}")
    logger.info(f"Active chat template type: {args.chat_format}")
    if not args.pack:
        logger.warning("Padding not applied as packing is disabled")

    timer = time.time()
    max_sample_size = args.block_size + 1
    
    configs = []
    if args.config_path:
        with open(args.config_path, "r", encoding="utf-8") as f:
            configs = json.load(f)

    if args.input_file:
        configs.append({'path': args.input_file})

    if args.input_dir:
        for root, dirs, files in os.walk(args.input_dir):
            for f in files:
                if f.endswith('.jsonl'):
                    configs.append({'path': os.path.join(root, f)})
    logger.info(f"Initialized with {len(configs)} input files")
    
    logger.info("Loading data")
    def load_data_file(config):
        weight = config['weight'] if 'weight' in config else args.default_weight
        weight_doc_prefix = f"{weight};"
        with open(config['path'], 'r') as f:
            return list(weight_doc_prefix + line for line in f if line)
        
    chunks = joblib.Parallel(n_jobs=args.max_workers)(joblib.delayed(load_data_file)(config) for config in configs)
    all_rows = list(chain.from_iterable(chunks))
    del chunks
    del configs
    instruction_count = len(all_rows)
    logger.info(f"Loaded {instruction_count:,} rows")
    
    logger.info("Shuffling data")
    random.shuffle(all_rows)
    logger.info("Shuffling completed")
    
    # adjust num of workers if needed
    if len(all_rows) < 10*args.max_workers:
        args.max_workers = max(1, len(all_rows) // 10)
    
    logger.info(f"Chunking {len(all_rows):,} rows into {args.max_workers} files")
    chunk_files = []
    for rank in tqdm(range(args.max_workers), total=args.max_workers, desc="Chunking", disable=(not args.verbose)):
        save_chunk_for_rank(all_rows[rank::args.max_workers], rank, args.output_dir, chunk_files)
    del all_rows
    logger.info(f"Saved {len(chunk_files)} chunks in {args.output_dir}")
    
    logger.info(f"Tokenizing {len(chunk_files)} files")
    processed_chunk_stats = []
    max_workers = min(len(chunk_files), args.max_workers)
    chunk_batches = list((chunk_file, args.pack, args.tokenizer_path, args.chat_format, args.block_size, args.ignore_index, args.pad_token_id, args.min_unmasked_tokens) for chunk_file in chunk_files)
    with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
        for result in tqdm(executor.map(process_chunk, chunk_batches), total=len(chunk_batches), desc="Tokenizing", disable=(not args.verbose)):
            processed_chunk_stats.append(result)
    del executor
    
    stats = {'created': 0, 'truncated': 0, 'rejected': 0, 'packed': 0}
    for s in processed_chunk_stats:
        for k, v in s.items():
            stats[k] += v
    del processed_chunk_stats
    logger.info(f"Tokenization finished in {len(chunk_files)} chunks. Stats: {stats}")
    
    logger.info(f"Merging {len(chunk_files)} chunks")
    chunks = joblib.Parallel(n_jobs=args.max_workers)(joblib.delayed(joblib.load)(f) for f in chunk_files)
    all_samples = list(chain.from_iterable(chunks))
    sample_count = len(all_samples)
    logger.info(f"{sample_count:,} samples loaded")
    
    assert isinstance(all_samples[0]["input_ids"], np.ndarray)
    assert isinstance(all_samples[0]["target_ids"], np.ndarray)

    assert sample_count > 0
    if args.save_samples:
        logger.info(f"Saving samples")
        samples_file = os.path.join(args.output_dir, "samples.jsonl")
        with open(samples_file, 'w') as f:
            for sample in all_samples[:100]:
                input_ids = sample["input_ids"].tolist()
                new_sample = {
                    "input": tokenizer.decode(input_ids),
                    "input_ids": input_ids,
                    "target_ids": sample["target_ids"].tolist(),
                }
                if 'target_weights' in sample:
                    new_sample["target_weights"] = sample["target_weights"].tolist()
                if 'seq_lens' in sample:
                    new_sample["seq_lens"] = sample["seq_lens"]
                
                f.write(json.dumps(new_sample, ensure_ascii=False))
                f.write('\n')
        logger.info(f"Samples saved in {samples_file}")

    if args.num_output_files > 1:
        for i in tqdm(range(args.num_output_files), desc="Saving", disable=(not args.verbose)):
            bucket = all_samples[i::args.num_output_files]
            output_file = os.path.join(args.output_dir, f"samples_part_{i:05}.alm")
            with open(output_file, 'wb') as f:
                joblib.dump(bucket, f)
            logger.info(f"Saved {len(bucket)} samples into {output_file}")
    else:
        output_file = os.path.join(args.output_dir, "all_samples.alm")
        with open(output_file, 'wb') as f:
            joblib.dump(all_samples, f)
        logger.info(f"All ({sample_count}) samples saved in {output_file}")
    
    # cleanup
    for chunk_file in chunk_files:
        os.remove(chunk_file)
    
    logger.info(f"Calculating stats")
    if args.pack:
        sample_lenghts = [sum(sample['seq_lens']) for sample in all_samples]
    else:
        sample_lenghts = [np.sum(sample['input_ids'] != args.pad_token_id).item() for sample in all_samples]
    shortest_sample_tokens = min(sample_lenghts)
    longest_sample_tokens = max(sample_lenghts)
    total_tokens_count = sum(sample_lenghts)
    stats = {
        'instruction_count': instruction_count,
        'samples_count': sample_count,
        'shortest_sample_tokens': shortest_sample_tokens,
        'longest_sample_tokens': longest_sample_tokens,
        'total_tokens_count': total_tokens_count,
        'avg_instruction_size': (total_tokens_count // instruction_count),
        'avg_sample_size': (total_tokens_count // sample_count),
        'packing_ratio': (instruction_count / sample_count),
        'packing_level': (total_tokens_count / (sample_count * args.block_size) * 100),
    }
    stats_str = json.dumps(stats, indent=4, ensure_ascii=False)
    logger.info(f"Stats:\n{stats_str}")
    stats_file = os.path.join(args.output_dir, "dataset_stats.json")
    with open(stats_file, 'w') as fin:
        json.dump(stats, fin)
    logger.info(f"Stats saved in {stats_file}")
    
    sample_lenght_histogram = dict(Counter(sample_lenghts))
    histogram_file = os.path.join(args.output_dir, "dataset_histogram.csv")
    with open(histogram_file, 'w') as fin:
        fin.write("token_count; sample_count\n")
        for length in range(0, max_sample_size+1):
            fin.write(f"{length}; {sample_lenght_histogram.get(length, 0)}\n")
    logger.info(f"Histogram saved in {histogram_file}")

    logger.info(f"Dataset with {sample_count:,} samples ({total_tokens_count:,} tokens) has been created in {format_seconds_as_time(time.time()-timer)}")