model.py 22.6 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import math
import inspect
from typing import Optional, Tuple, Union
from dataclasses import dataclass

import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint

from allamo.logging import logger
from allamo.model.attentions import attention_version

@dataclass
class AllamoTransformerConfig:
    block_size: int = 1024
    vocab_size: int = 32000
    rope_freq_base: int = 10000
    rope_freq_scale: float = 1.0
    n_layer: int = 12
    num_kv_heads: Union[None, int] = None
    head_size: Union[None, int] = None
    n_head: int = 12
    n_embd: int = 768
    intermediate_size: int = None
    dropout: float = 0.0
    bias: bool = True # True: bias in Linears. False: a bit better and faster
    multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
    norm_eps: float = 1e-5
    sliding_window: int = None
    gradient_checkpointing: bool = False

class RMSNorm(torch.nn.Module):
    """RMSNorm normalizing function, introduced by Zhang and Sennrich (2019)"""
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))
        
    def forward(self, x):
        input_dtype = x.dtype
        x = x.to(torch.float32)
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.eps)
        return self.weight * x.to(input_dtype)
    
    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)
        
class RotaryEmbedding(torch.nn.Module):
    
    def __init__(self, config: AllamoTransformerConfig):
        super().__init__()
        self.dim = config.head_size
        self.max_seq_len = config.block_size
        self.base = config.rope_freq_base if config.rope_freq_base is not None else 10000
        self.scale = config.rope_freq_scale if config.rope_freq_scale is not None else 1.0
        self._rope_init()
        
    # Define reset_parameters for FSDP initialization
    def reset_parameters(self):
        self._rope_init()

    def _rope_init(self):
        inv_freq = 1.0 / (self.scale * (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.build_rope_cache(self.max_seq_len)
        
    def build_rope_cache(self, max_seq_len: int = 4096) -> None:
        t = torch.arange(max_seq_len, device=self.inv_freq.device, dtype=torch.int64).type_as(self.inv_freq)
        freqs = torch.outer(t, self.inv_freq).float()
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos(), persistent=False)
        self.register_buffer("sin_cached", emb.sin(), persistent=False)
    
    def forward(self,
        q: torch.Tensor,
        k: torch.Tensor,
        input_pos: Optional[torch.Tensor] = None,
    ):
        # q,k: [bs, num_attention_heads, seq_len, head_size]
        dtype = q.dtype
        q = q.float()
        k = k.float()
        if input_pos is None:
            cos = self.cos_cached[None, None, :q.size(2), ...]
            sin = self.sin_cached[None, None, :q.size(2), ...]
        else:
            cos = self.cos_cached[input_pos].unsqueeze(1)
            sin = self.sin_cached[input_pos].unsqueeze(1)
        
        q_out = (q * cos) + (self.__rotate_half(q) * sin)
        k_out = (k * cos) + (self.__rotate_half(k) * sin)
        return q_out.to(dtype=dtype), k_out.to(dtype=dtype)
    
    def __rotate_half(self, x):
        # Rotates half the hidden dims of the input
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

class FeedForward(nn.Module):

    def __init__(self, config: AllamoTransformerConfig):
        super().__init__()
        if config.intermediate_size is None:
            config.intermediate_size = int(2 * (4 * config.n_embd) / 3)
            config.intermediate_size = config.multiple_of * ((config.intermediate_size + config.multiple_of - 1) // config.multiple_of)
        
        self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
        self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.act_fn  = nn.SiLU() # SwiGLU activation function
        self.dropout = nn.Dropout(config.dropout) if config.dropout != 0 else None
        self.gradient_checkpointing = config.gradient_checkpointing
        
    def init_weights(self, init_std: float):
        torch.nn.init.trunc_normal_(self.gate_proj.weight, mean=0.0, std=0.02)
        for module in (self.down_proj, self.up_proj):
            torch.nn.init.trunc_normal_(module.weight, mean=0.0, std=init_std)

    def forward(self, x):
        if self.training and self.gradient_checkpointing:
            x = checkpoint(self.mlp, x, use_reentrant=False, preserve_rng_state=False)
        else:
            x = self.mlp(x)
        if self.dropout is not None:
            x = self.dropout(x)
        return x
        
    def mlp(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class Attention(nn.Module):

    def __init__(self, config: AllamoTransformerConfig):
        super().__init__()
        self.head_size = config.head_size
        self.num_heads = config.n_head
        self.num_kv_heads = config.num_kv_heads
        self.num_key_value_groups = self.num_heads // self.num_kv_heads
        self.dropout = config.dropout
        self.sliding_window = config.sliding_window if attention_version.flash_attn_2_supports_window_size else None
        self.gradient_checkpointing = config.gradient_checkpointing
        
        assert self.num_key_value_groups * self.num_kv_heads == self.num_heads
        
        # key, query, value projections for all heads
        self.q_proj = nn.Linear(config.n_embd, self.num_heads * self.head_size, bias=config.bias)
        self.k_proj = nn.Linear(config.n_embd, self.num_kv_heads * self.head_size, bias=config.bias)
        self.v_proj = nn.Linear(config.n_embd, self.num_kv_heads * self.head_size, bias=config.bias)
        # output projection
        self.c_proj = nn.Linear(self.num_heads * self.head_size, config.n_embd, bias=config.bias)
        # regularization
        self.attn_dropout = nn.Dropout(config.dropout) if attention_version.version == 0 and config.dropout != 0 else None
        self.proj_dropout = nn.Dropout(config.dropout) if config.dropout != 0 else None
        
        if attention_version.version == 0:
            # causal mask to ensure that attention is only applied to the left in the input sequence
            self.register_buffer("temp_mask", torch.tril(torch.ones(1, 1, config.block_size, config.block_size)), persistent=False)
            
    def init_weights(self, init_std: float):
        for module in (self.q_proj, self.k_proj, self.v_proj):
            torch.nn.init.trunc_normal_(module.weight, mean=0.0, std=0.02)
        torch.nn.init.trunc_normal_(self.c_proj.weight, mean=0.0, std=init_std)
        
        if attention_version.version == 0:
            with torch.device(self.temp_mask.device):
                self.temp_mask = torch.tril(torch.ones(1, 1, self.temp_mask.shape[2], self.temp_mask.shape[3]))
        
    def forward(self,
                q_x: torch.Tensor,
                kv_x: torch.Tensor,
                rotary_emb: RotaryEmbedding,
                attn_mask: Optional[torch.Tensor] = None,
                input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        # notation:
        # B  | batch
        # T  | time-step (sequence length)
        # C  | embeddings size
        # hs | head size
        # nh | number of heads
        B, T, C = q_x.size()
        
        if self.training and self.gradient_checkpointing:
            q, k, v = checkpoint(self.project_qkv, q_x, kv_x, use_reentrant=False, preserve_rng_state=False)
        else:
            q, k, v = self.project_qkv(q_x, kv_x)
        
        q = q.view(B, T, self.num_heads, self.head_size).transpose(1, 2) # (B, nh, T, hs)
        k = k.view(B, T, self.num_kv_heads, self.head_size).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.num_kv_heads, self.head_size).transpose(1, 2) # (B, nh, T, hs)
        
        q, k = rotary_emb(q, k, input_pos=input_pos)
        
        if self.num_key_value_groups > 1:
            k = self.repeat_kv(k, self.num_key_value_groups)
            v = self.repeat_kv(v, self.num_key_value_groups)
        
        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if attention_version.version == 2:
            if attn_mask is not None:
                raise ValueError(f"Custom attention mask is not supported for FlashAttention2")
            # Flash Attention 2 requires (B, T, nh, hs)
            q = q.transpose(1, 2)
            k = k.transpose(1, 2)
            v = v.transpose(1, 2)
            if self.sliding_window:            
                y = flash_attn_func(q, k, v, dropout_p=self.dropout if self.training else 0, causal=True, window_size=(self.sliding_window, self.sliding_window))
            else:
                y = flash_attn_func(q, k, v, dropout_p=self.dropout if self.training else 0, causal=True)
        elif attention_version.version == 1:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=attn_mask,
                dropout_p=self.dropout if self.training else 0,
                is_causal=attn_mask is None,
            )
            y = y.transpose(1, 2)
        else:
            # manual implementation of attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            if attn_mask is None:
                att = att.masked_fill(self.temp_mask[:,:,:T,:T] == 0, float('-inf'))
            else:
                att = att.masked_fill(attn_mask.logical_not(), float('-inf'))
            att = F.softmax(att, dim=-1)
            if self.attn_dropout is not None:
                att = self.attn_dropout(att)
            y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
            y = y.transpose(1, 2)

        # output projection
        y = y.contiguous().view(B, T, self.num_heads * self.head_size) # re-assemble all head outputs side by side
        if self.training and self.gradient_checkpointing:
            y = checkpoint(self.c_proj, y, use_reentrant=False, preserve_rng_state=False)
        else:
            y = self.c_proj(y) # (B, T, nh * hs) -> (B, T, C)
        if self.proj_dropout is not None:
            y = self.proj_dropout(y)
        return y
        
    def project_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor):
        if kv_x is None:
            kv_x = q_x # self attention
        q = self.q_proj(q_x)
        k = self.k_proj(kv_x)
        v = self.v_proj(kv_x)
        return q, k, v
        
    def repeat_kv(self, x: torch.Tensor, num_key_value_groups: int) -> torch.Tensor:
        # (B, num_kv_heads, T, hs) -> (B, nh, T, hs)
        if num_key_value_groups == 1:
            return x
        B, num_kv_heads, T, hs = x.shape
        x = x[:, :, None, :, :].expand(B, num_kv_heads, num_key_value_groups, T, hs)
        return x.reshape(B, num_kv_heads * num_key_value_groups, T, hs)
        
class SelfAttentionBlock(nn.Module):

    def __init__(self, config: AllamoTransformerConfig):
        super().__init__()
        self.attention = Attention(config)
        self.feed_forward = FeedForward(config)
        self.attention_norm = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.ffn_norm = RMSNorm(config.n_embd, eps=config.norm_eps)
    
    def init_weights(self, init_std: float):
        self.attention.init_weights(init_std)
        self.feed_forward.init_weights(init_std)
        for norm in (self.attention_norm, self.ffn_norm):
            norm.reset_parameters()

    def forward(self,
        x: torch.Tensor,
        rotary_emb: RotaryEmbedding,
        attn_mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        x = x + self.attention(self.attention_norm(x), None, rotary_emb, attn_mask=attn_mask, input_pos=input_pos)
        x = x + self.feed_forward(self.ffn_norm(x))
        return x

class AllamoTransformer(nn.Module):

    def __init__(self, config: AllamoTransformerConfig):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config
        if config.head_size is None:
            assert config.n_embd % config.n_head == 0
            config.head_size = config.n_embd // config.n_head
            logger.info(f"defaulting to head_size={config.head_size} (n_embd / n_head)")
        if config.num_kv_heads is None:
            config.num_kv_heads = config.n_head
        logger.info(f"AllamoTransformerConfig: {config}")
        
        self.init_attention()
        attention_version.log_version(self.config.sliding_window)
        
        self.tok_embeddings = nn.Embedding(config.vocab_size, config.n_embd)
        self.tok_drop = nn.Dropout(config.dropout) if config.dropout != 0 else None
        
        self.rotary_emb = RotaryEmbedding(config)
        
        self.layers = torch.nn.ModuleList()
        for layer_id in range(config.n_layer):
            self.layers.append(SelfAttentionBlock(config))
        
        self.norm = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        
        self.log_estimated_size()
        self.init_model_weights()
        
    def init_model_weights(self):
        with torch.device(self.rotary_emb.inv_freq.device):
            self.rotary_emb.reset_parameters()
        
        if self.tok_embeddings is not None:
            torch.nn.init.normal_(self.tok_embeddings.weight, mean=0.0, std=1.0)
            
        weight_init_std = self.calculate_weight_init_std(self.config.n_layer)
        for layer in self.layers:
            if layer is not None:
                layer.init_weights(weight_init_std)
        
        if self.norm is not None:
            self.norm.reset_parameters()
        
        if self.lm_head is not None:
            cutoff_factor = 3
            weight_init_std = self.config.n_embd ** -0.5
            lower = -cutoff_factor * weight_init_std
            upper = cutoff_factor * weight_init_std
            torch.nn.init.trunc_normal_(self.lm_head.weight, mean=0.0, std=weight_init_std, a=lower, b=upper)

    def init_attention(self):
        if attention_version.version == 2:
            try:
                from flash_attn import flash_attn_func
                attention_version.flash_attn_2_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
            except ImportError:
                attention_version.disable_flash_attn_2()
                logger.warning("Flash Attention 2 is not available!")
                
    def calculate_weight_init_std(self, num_layers):
        return 0.02 / math.sqrt(2 * num_layers)

    def estimate_size(self):
        """
        Return the number of parameters and their size in the model.
        """
        params = 0
        bytes = 0
        for p in self.parameters():
            params += p.numel()
            bytes += p.numel() * p.element_size()
        for b in self.buffers():
            # don't count buffers as params
            bytes += b.numel() * b.element_size()
        return params, bytes
        
    def log_estimated_size(self):
        self.model_num_params, self.model_num_bytes = self.estimate_size()
        model_params = self.model_num_params / 1e6
        model_bytes = self.model_num_bytes / 1024**2
        logger.info(f"Model parameters: {model_params:.2f}M, Est. Size: {model_bytes:.3f}MB")
            
    def add_layer(self, new_layers=1):
        for _ in range(new_layers):
            layer = SelfAttentionBlock(self.config)
            self.layers.append(layer)
            self.config.n_layer += 1
            layer.init_weights(self.calculate_weight_init_std(self.config.n_layer))
            
    def freeze_params(self, module):
        for param in module.parameters():
            if param.requires_grad:
                param.requires_grad = False
            
    def token_embeddings(self, input_ids):
        _, t = input_ids.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"

        x = self.tok_embeddings(input_ids) # token embeddings of shape (b, t, n_embd)
        if self.tok_drop is not None:
            x = self.tok_drop(x)
        return x

    def apply_layers(self,
        x: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        for layer in self.layers:
            x = layer(x, self.rotary_emb, attn_mask=attn_mask, input_pos=input_pos)
        return x

    def forward(self,
        input_ids: torch.Tensor,
        target_ids: Optional[torch.Tensor] = None,
        target_weights: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
        ignore_index: Optional[int] = -100,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.FloatTensor]]]:
        if inputs_embeds is not None:
            b, t, n_embd = inputs_embeds.size()
            assert t <= self.config.block_size, f"Cannot forward embeddings of length {t}, block size is only {self.config.block_size}"
        else:
            inputs_embeds = self.token_embeddings(input_ids)
        
        if attn_mask is not None:
            if attn_mask.ndim == 3:
                attn_mask = attn_mask.unsqueeze(1) # (B, T, T) -> (B, 1, T, T)
            elif attn_mask.ndim != 4:
                raise ValueError(f"Unsupport attn_mask shape {attn_mask.shape}")
        
        hidden_states = self.apply_layers(inputs_embeds, attn_mask=attn_mask, input_pos=input_pos)
        final_embeddings = self.norm(hidden_states)
        if target_ids is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(final_embeddings)
            if target_weights is None:
                loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target_ids.view(-1), ignore_index=ignore_index)
            else:
                loss = (target_weights.view(-1) * F.cross_entropy(logits.view(-1, logits.size(-1)), target_ids.view(-1), reduction="none")).sum()
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            logits = self.lm_head(final_embeddings[:, [-1], :]) # note: using list [-1] to preserve the time dim
            loss = None
        return logits, loss, hidden_states

    def configure_optimizers(self, config, device_type):
        # start with all of the candidate parameters
        param_dict = {param_name: p for param_name, p in self.named_parameters()}
        # filter out those that do not require grad
        param_dict = {param_name: p for param_name, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        def is_weight_decay_forbidden(param_name):
            return param_name.endswith('.bias') or param_name.endswith('_norm.weight') or param_name == 'norm.weight'
        decay_params = [p for n, p in param_dict.items() if not is_weight_decay_forbidden(n)]
        nodecay_params = [p for n, p in param_dict.items() if is_weight_decay_forbidden(n)]
        optim_groups = [
            {'params': decay_params, 'weight_decay': config.weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        logger.info(f"Decayed parameter tensors: {len(decay_params):,}, with {num_decay_params:,} parameters")
        logger.info(f"Non-decayed parameter tensors: {len(nodecay_params):,}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=config.learning_rate, betas=(config.beta1, config.beta2), **extra_args)
        logger.info(f"Using fused AdamW: {use_fused}")

        return optimizer
        
    @torch.no_grad()
    def generate_embeddings(self, tokens):
        x = self.token_embeddings(tokens)
        x = self.apply_layers(x)
        x = self.norm(x)
        return x

    @torch.no_grad()
    def generate(self, tokens, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of tokens (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        if tokens.size(1) > self.config.block_size:
            logger.info(
                f"Input of {tokens.size(1)} tokens exceeds limit {self.config.block_size}. "
                f"Initial tokens will be dropped to fit."
            )
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            if tokens.size(1) > self.config.block_size:
                tokens = tokens[:, -self.config.block_size:]
            # forward the model to get the logits for the tokens
            logits = self(tokens)[0]
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            next_token = torch.multinomial(probs, num_samples=1)
            # append next token to the running sequence and continue
            tokens = torch.cat((tokens, next_token), dim=1)

        return tokens