ResNet.py 3.67 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from __future__ import absolute_import

import torch
from torch import nn
from torch.nn import functional as F
import torchvision

from aligned.HorizontalMaxPool2D import HorizontalMaxPool2d

__all__ = ['ResNet50', 'ResNet101']

class ResNet50(nn.Module):
    def __init__(self, num_classes, loss={'softmax'}, aligned=False, **kwargs):
        super(ResNet50, self).__init__()
        self.loss = loss
        resnet50 = torchvision.models.resnet50(pretrained=True)
        self.base = nn.Sequential(*list(resnet50.children())[:-2])
        self.classifier = nn.Linear(2048, num_classes)
        self.feat_dim = 2048 # feature dimension
        self.aligned = aligned
        self.horizon_pool = HorizontalMaxPool2d()
        if self.aligned:
            self.bn = nn.BatchNorm2d(2048)
            self.relu = nn.ReLU(inplace=True)
            self.conv1 = nn.Conv2d(2048, 128, kernel_size=1, stride=1, padding=0, bias=True)

    def forward(self, x):

        x = self.base(x)
        if not self.training:
            lf = self.horizon_pool(x)
        if self.aligned and self.training:
            lf = self.bn(x)
            lf = self.relu(lf)
            lf = self.horizon_pool(lf)
            lf = self.conv1(lf)
        if self.aligned or not self.training:
            lf = lf.view(lf.size()[0:3])
            lf = lf / torch.pow(lf,2).sum(dim=1, keepdim=True).clamp(min=1e-12).sqrt()
        x = F.avg_pool2d(x, x.size()[2:])
        f = x.view(x.size(0), -1)
        #f = 1. * f / (torch.norm(f, 2, dim=-1, keepdim=True).expand_as(f) + 1e-12)
        if not self.training:
            return f,lf
        y = self.classifier(f)
        if self.loss == {'softmax'}:
            return y
        elif self.loss == {'metric'}:
            if self.aligned: return  f, lf
            return f
        elif self.loss == {'softmax', 'metric'}:
            if self.aligned: return y, f, lf
            return y, f
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))

class ResNet101(nn.Module):
    def __init__(self, num_classes, loss={'softmax'}, aligned=False, **kwargs):
        super(ResNet101, self).__init__()
        self.loss = loss
        resnet101 = torchvision.models.resnet101(pretrained=False)
        self.base = nn.Sequential(*list(resnet101.children())[:-2])
        self.classifier = nn.Linear(2048, num_classes)
        self.feat_dim = 2048 # feature dimension
        self.aligned = aligned
        self.horizon_pool = HorizontalMaxPool2d()
        if self.aligned:
            self.bn = nn.BatchNorm2d(2048)
            self.relu = nn.ReLU(inplace=True)
            self.conv1 = nn.Conv2d(2048, 128, kernel_size=1, stride=1, padding=0, bias=True)

    def forward(self, x):
        x = self.base(x)
        if not self.training:
            lf = self.horizon_pool(x)
        if self.aligned:
            lf = self.bn(x)
            lf = self.relu(lf)
            lf = self.horizon_pool(lf)
            lf = self.conv1(lf)
        if self.aligned or not self.training:
            lf = lf.view(lf.size()[0:3])
            lf = lf / torch.pow(lf, 2).sum(dim=1, keepdim=True).clamp(min=1e-12).sqrt()
        x = F.avg_pool2d(x, x.size()[2:])
        f = x.view(x.size(0), -1)
        # f = 1. * f / (torch.norm(f, 2, dim=-1, keepdim=True).expand_as(f) + 1e-12)
        if not self.training:
            return f, lf
        y = self.classifier(f)
        if self.loss == {'softmax'}:
            return y
        elif self.loss == {'metric'}:
            if self.aligned: return f, lf
            return f
        elif self.loss == {'softmax', 'metric'}:
            if self.aligned: return y, f, lf
            return y, f
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))